Compare commits

..

5 Commits

Author SHA1 Message Date
Johnpaul 23e3c79c85 Remove post-merge instructions from the CI container update workflow. 2026-01-07 09:13:12 +01:00
Johnpaul 3b3fc70454 refactor: rename `update-ci-container.yaml` workflow to `update-ci-container.yml` 2026-01-07 09:12:35 +01:00
Johnpaul 02ac8e4e16 ci: update CI container repository owner 2026-01-07 09:11:14 +01:00
Johnpaul eab7088f9b feat: add CI container version bump automation
Adds a workflow that triggers on releases to create PRs in the
comfyui-ci-container repo, updating the ComfyUI version in the Dockerfile.

Supports both release events and manual workflow dispatch for testing.
2026-01-07 09:09:44 +01:00
Johnpaul 037c5a4c8b feat: add CI container version bump automation
Adds a workflow that triggers on releases to create PRs in the
comfyui-ci-container repo, updating the ComfyUI version in the Dockerfile.

Supports both release events and manual workflow dispatch for testing.
2026-01-07 08:15:38 +01:00
50 changed files with 314 additions and 2637 deletions

View File

@ -117,7 +117,7 @@ jobs:
./python.exe get-pip.py
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
./python.exe -s -m pip install -r requirements_comfyui.txt
rm requirements_comfyui.txt

View File

@ -20,6 +20,7 @@ jobs:
test-stable:
strategy:
fail-fast: false
max-parallel: 1 # This forces sequential execution
matrix:
# os: [macos, linux, windows]
# os: [macos, linux]
@ -74,6 +75,7 @@ jobs:
test-unix-nightly:
strategy:
fail-fast: false
max-parallel: 1 # This forces sequential execution
matrix:
# os: [macos, linux]
os: [linux]

View File

@ -0,0 +1,59 @@
name: "CI: Update CI Container"
on:
release:
types: [published]
workflow_dispatch:
inputs:
version:
description: 'ComfyUI version (e.g., v0.7.0)'
required: true
type: string
jobs:
update-ci-container:
runs-on: ubuntu-latest
# Skip pre-releases unless manually triggered
if: github.event_name == 'workflow_dispatch' || !github.event.release.prerelease
steps:
- name: Get version
id: version
run: |
if [ "${{ github.event_name }}" = "release" ]; then
VERSION="${{ github.event.release.tag_name }}"
else
VERSION="${{ inputs.version }}"
fi
echo "version=$VERSION" >> $GITHUB_OUTPUT
- name: Checkout comfyui-ci-container
uses: actions/checkout@v4
with:
repository: comfy-org/comfyui-ci-container
token: ${{ secrets.CI_CONTAINER_PAT }}
- name: Check current version
id: current
run: |
CURRENT=$(grep -oP 'ARG COMFYUI_VERSION=\K.*' Dockerfile || echo "unknown")
echo "current_version=$CURRENT" >> $GITHUB_OUTPUT
- name: Update Dockerfile
run: |
VERSION="${{ steps.version.outputs.version }}"
sed -i "s/^ARG COMFYUI_VERSION=.*/ARG COMFYUI_VERSION=${VERSION}/" Dockerfile
- name: Create Pull Request
id: create-pr
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.CI_CONTAINER_PAT }}
branch: automation/comfyui-${{ steps.version.outputs.version }}
title: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"
body: |
Updates ComfyUI version from `${{ steps.current.outputs.current_version }}` to `${{ steps.version.outputs.version }}`
**Triggered by:** ${{ github.event_name == 'release' && format('[Release {0}]({1})', github.event.release.tag_name, github.event.release.html_url) || 'Manual workflow dispatch' }}
labels: automation
commit-message: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"

View File

@ -183,7 +183,7 @@ Simply download, extract with [7-Zip](https://7-zip.org) or with the windows exp
If you have trouble extracting it, right click the file -> properties -> unblock
The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start.
Update your Nvidia drivers if it doesn't start.
#### Alternative Downloads:
@ -212,7 +212,7 @@ Python 3.14 works but you may encounter issues with the torch compile node. The
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old.
torch 2.4 and above is supported but some features might only work on newer versions. We generally recommend using the latest major version of pytorch unless it is less than 2 weeks old.
### Instructions:

View File

@ -1,174 +0,0 @@
"""
Initial assets schema
Revision ID: 0001_assets
Revises: None
Create Date: 2025-12-10 00:00:00
"""
from alembic import op
import sqlalchemy as sa
revision = "0001_assets"
down_revision = None
branch_labels = None
depends_on = None
def upgrade() -> None:
# ASSETS: content identity
op.create_table(
"assets",
sa.Column("id", sa.String(length=36), primary_key=True),
sa.Column("hash", sa.String(length=256), nullable=True),
sa.Column("size_bytes", sa.BigInteger(), nullable=False, server_default="0"),
sa.Column("mime_type", sa.String(length=255), nullable=True),
sa.Column("created_at", sa.DateTime(timezone=False), nullable=False),
sa.CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"),
)
op.create_index("uq_assets_hash", "assets", ["hash"], unique=True)
op.create_index("ix_assets_mime_type", "assets", ["mime_type"])
# ASSETS_INFO: user-visible references
op.create_table(
"assets_info",
sa.Column("id", sa.String(length=36), primary_key=True),
sa.Column("owner_id", sa.String(length=128), nullable=False, server_default=""),
sa.Column("name", sa.String(length=512), nullable=False),
sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False),
sa.Column("preview_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="SET NULL"), nullable=True),
sa.Column("user_metadata", sa.JSON(), nullable=True),
sa.Column("created_at", sa.DateTime(timezone=False), nullable=False),
sa.Column("updated_at", sa.DateTime(timezone=False), nullable=False),
sa.Column("last_access_time", sa.DateTime(timezone=False), nullable=False),
sa.UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"),
)
op.create_index("ix_assets_info_owner_id", "assets_info", ["owner_id"])
op.create_index("ix_assets_info_asset_id", "assets_info", ["asset_id"])
op.create_index("ix_assets_info_name", "assets_info", ["name"])
op.create_index("ix_assets_info_created_at", "assets_info", ["created_at"])
op.create_index("ix_assets_info_last_access_time", "assets_info", ["last_access_time"])
op.create_index("ix_assets_info_owner_name", "assets_info", ["owner_id", "name"])
# TAGS: normalized tag vocabulary
op.create_table(
"tags",
sa.Column("name", sa.String(length=512), primary_key=True),
sa.Column("tag_type", sa.String(length=32), nullable=False, server_default="user"),
sa.CheckConstraint("name = lower(name)", name="ck_tags_lowercase"),
)
op.create_index("ix_tags_tag_type", "tags", ["tag_type"])
# ASSET_INFO_TAGS: many-to-many for tags on AssetInfo
op.create_table(
"asset_info_tags",
sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False),
sa.Column("tag_name", sa.String(length=512), sa.ForeignKey("tags.name", ondelete="RESTRICT"), nullable=False),
sa.Column("origin", sa.String(length=32), nullable=False, server_default="manual"),
sa.Column("added_at", sa.DateTime(timezone=False), nullable=False),
sa.PrimaryKeyConstraint("asset_info_id", "tag_name", name="pk_asset_info_tags"),
)
op.create_index("ix_asset_info_tags_tag_name", "asset_info_tags", ["tag_name"])
op.create_index("ix_asset_info_tags_asset_info_id", "asset_info_tags", ["asset_info_id"])
# ASSET_CACHE_STATE: N:1 local cache rows per Asset
op.create_table(
"asset_cache_state",
sa.Column("id", sa.Integer(), primary_key=True, autoincrement=True),
sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="CASCADE"), nullable=False),
sa.Column("file_path", sa.Text(), nullable=False), # absolute local path to cached file
sa.Column("mtime_ns", sa.BigInteger(), nullable=True),
sa.Column("needs_verify", sa.Boolean(), nullable=False, server_default=sa.text("false")),
sa.CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"),
sa.UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"),
)
op.create_index("ix_asset_cache_state_file_path", "asset_cache_state", ["file_path"])
op.create_index("ix_asset_cache_state_asset_id", "asset_cache_state", ["asset_id"])
# ASSET_INFO_META: typed KV projection of user_metadata for filtering/sorting
op.create_table(
"asset_info_meta",
sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False),
sa.Column("key", sa.String(length=256), nullable=False),
sa.Column("ordinal", sa.Integer(), nullable=False, server_default="0"),
sa.Column("val_str", sa.String(length=2048), nullable=True),
sa.Column("val_num", sa.Numeric(38, 10), nullable=True),
sa.Column("val_bool", sa.Boolean(), nullable=True),
sa.Column("val_json", sa.JSON(), nullable=True),
sa.PrimaryKeyConstraint("asset_info_id", "key", "ordinal", name="pk_asset_info_meta"),
)
op.create_index("ix_asset_info_meta_key", "asset_info_meta", ["key"])
op.create_index("ix_asset_info_meta_key_val_str", "asset_info_meta", ["key", "val_str"])
op.create_index("ix_asset_info_meta_key_val_num", "asset_info_meta", ["key", "val_num"])
op.create_index("ix_asset_info_meta_key_val_bool", "asset_info_meta", ["key", "val_bool"])
# Tags vocabulary
tags_table = sa.table(
"tags",
sa.column("name", sa.String(length=512)),
sa.column("tag_type", sa.String()),
)
op.bulk_insert(
tags_table,
[
{"name": "models", "tag_type": "system"},
{"name": "input", "tag_type": "system"},
{"name": "output", "tag_type": "system"},
{"name": "configs", "tag_type": "system"},
{"name": "checkpoints", "tag_type": "system"},
{"name": "loras", "tag_type": "system"},
{"name": "vae", "tag_type": "system"},
{"name": "text_encoders", "tag_type": "system"},
{"name": "diffusion_models", "tag_type": "system"},
{"name": "clip_vision", "tag_type": "system"},
{"name": "style_models", "tag_type": "system"},
{"name": "embeddings", "tag_type": "system"},
{"name": "diffusers", "tag_type": "system"},
{"name": "vae_approx", "tag_type": "system"},
{"name": "controlnet", "tag_type": "system"},
{"name": "gligen", "tag_type": "system"},
{"name": "upscale_models", "tag_type": "system"},
{"name": "hypernetworks", "tag_type": "system"},
{"name": "photomaker", "tag_type": "system"},
{"name": "classifiers", "tag_type": "system"},
{"name": "encoder", "tag_type": "system"},
{"name": "decoder", "tag_type": "system"},
{"name": "missing", "tag_type": "system"},
{"name": "rescan", "tag_type": "system"},
],
)
def downgrade() -> None:
op.drop_index("ix_asset_info_meta_key_val_bool", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key_val_num", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key_val_str", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key", table_name="asset_info_meta")
op.drop_table("asset_info_meta")
op.drop_index("ix_asset_cache_state_asset_id", table_name="asset_cache_state")
op.drop_index("ix_asset_cache_state_file_path", table_name="asset_cache_state")
op.drop_constraint("uq_asset_cache_state_file_path", table_name="asset_cache_state")
op.drop_table("asset_cache_state")
op.drop_index("ix_asset_info_tags_asset_info_id", table_name="asset_info_tags")
op.drop_index("ix_asset_info_tags_tag_name", table_name="asset_info_tags")
op.drop_table("asset_info_tags")
op.drop_index("ix_tags_tag_type", table_name="tags")
op.drop_table("tags")
op.drop_constraint("uq_assets_info_asset_owner_name", table_name="assets_info")
op.drop_index("ix_assets_info_owner_name", table_name="assets_info")
op.drop_index("ix_assets_info_last_access_time", table_name="assets_info")
op.drop_index("ix_assets_info_created_at", table_name="assets_info")
op.drop_index("ix_assets_info_name", table_name="assets_info")
op.drop_index("ix_assets_info_asset_id", table_name="assets_info")
op.drop_index("ix_assets_info_owner_id", table_name="assets_info")
op.drop_table("assets_info")
op.drop_index("uq_assets_hash", table_name="assets")
op.drop_index("ix_assets_mime_type", table_name="assets")
op.drop_table("assets")

View File

@ -1,102 +0,0 @@
import logging
import uuid
from aiohttp import web
from pydantic import ValidationError
import app.assets.manager as manager
from app import user_manager
from app.assets.api import schemas_in
from app.assets.helpers import get_query_dict
ROUTES = web.RouteTableDef()
USER_MANAGER: user_manager.UserManager | None = None
# UUID regex (canonical hyphenated form, case-insensitive)
UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None:
global USER_MANAGER
USER_MANAGER = user_manager_instance
app.add_routes(ROUTES)
def _error_response(status: int, code: str, message: str, details: dict | None = None) -> web.Response:
return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status)
def _validation_error_response(code: str, ve: ValidationError) -> web.Response:
return _error_response(400, code, "Validation failed.", {"errors": ve.json()})
@ROUTES.get("/api/assets")
async def list_assets(request: web.Request) -> web.Response:
"""
GET request to list assets.
"""
query_dict = get_query_dict(request)
try:
q = schemas_in.ListAssetsQuery.model_validate(query_dict)
except ValidationError as ve:
return _validation_error_response("INVALID_QUERY", ve)
payload = manager.list_assets(
include_tags=q.include_tags,
exclude_tags=q.exclude_tags,
name_contains=q.name_contains,
metadata_filter=q.metadata_filter,
limit=q.limit,
offset=q.offset,
sort=q.sort,
order=q.order,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(payload.model_dump(mode="json"))
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}")
async def get_asset(request: web.Request) -> web.Response:
"""
GET request to get an asset's info as JSON.
"""
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
result = manager.get_asset(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as e:
return _error_response(404, "ASSET_NOT_FOUND", str(e), {"id": asset_info_id})
except Exception:
logging.exception(
"get_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.get("/api/tags")
async def get_tags(request: web.Request) -> web.Response:
"""
GET request to list all tags based on query parameters.
"""
query_map = dict(request.rel_url.query)
try:
query = schemas_in.TagsListQuery.model_validate(query_map)
except ValidationError as e:
return web.json_response(
{"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": e.errors()}},
status=400,
)
result = manager.list_tags(
prefix=query.prefix,
limit=query.limit,
offset=query.offset,
order=query.order,
include_zero=query.include_zero,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(result.model_dump(mode="json"))

View File

@ -1,94 +0,0 @@
import json
import uuid
from typing import Any, Literal
from pydantic import (
BaseModel,
ConfigDict,
Field,
conint,
field_validator,
)
class ListAssetsQuery(BaseModel):
include_tags: list[str] = Field(default_factory=list)
exclude_tags: list[str] = Field(default_factory=list)
name_contains: str | None = None
# Accept either a JSON string (query param) or a dict
metadata_filter: dict[str, Any] | None = None
limit: conint(ge=1, le=500) = 20
offset: conint(ge=0) = 0
sort: Literal["name", "created_at", "updated_at", "size", "last_access_time"] = "created_at"
order: Literal["asc", "desc"] = "desc"
@field_validator("include_tags", "exclude_tags", mode="before")
@classmethod
def _split_csv_tags(cls, v):
# Accept "a,b,c" or ["a","b"] (we are liberal in what we accept)
if v is None:
return []
if isinstance(v, str):
return [t.strip() for t in v.split(",") if t.strip()]
if isinstance(v, list):
out: list[str] = []
for item in v:
if isinstance(item, str):
out.extend([t.strip() for t in item.split(",") if t.strip()])
return out
return v
@field_validator("metadata_filter", mode="before")
@classmethod
def _parse_metadata_json(cls, v):
if v is None or isinstance(v, dict):
return v
if isinstance(v, str) and v.strip():
try:
parsed = json.loads(v)
except Exception as e:
raise ValueError(f"metadata_filter must be JSON: {e}") from e
if not isinstance(parsed, dict):
raise ValueError("metadata_filter must be a JSON object")
return parsed
return None
class TagsListQuery(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
prefix: str | None = Field(None, min_length=1, max_length=256)
limit: int = Field(100, ge=1, le=1000)
offset: int = Field(0, ge=0, le=10_000_000)
order: Literal["count_desc", "name_asc"] = "count_desc"
include_zero: bool = True
@field_validator("prefix")
@classmethod
def normalize_prefix(cls, v: str | None) -> str | None:
if v is None:
return v
v = v.strip()
return v.lower() or None
class SetPreviewBody(BaseModel):
"""Set or clear the preview for an AssetInfo. Provide an Asset.id or null."""
preview_id: str | None = None
@field_validator("preview_id", mode="before")
@classmethod
def _norm_uuid(cls, v):
if v is None:
return None
s = str(v).strip()
if not s:
return None
try:
uuid.UUID(s)
except Exception:
raise ValueError("preview_id must be a UUID")
return s

View File

@ -1,60 +0,0 @@
from datetime import datetime
from typing import Any
from pydantic import BaseModel, ConfigDict, Field, field_serializer
class AssetSummary(BaseModel):
id: str
name: str
asset_hash: str | None = None
size: int | None = None
mime_type: str | None = None
tags: list[str] = Field(default_factory=list)
preview_url: str | None = None
created_at: datetime | None = None
updated_at: datetime | None = None
last_access_time: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "updated_at", "last_access_time")
def _ser_dt(self, v: datetime | None, _info):
return v.isoformat() if v else None
class AssetsList(BaseModel):
assets: list[AssetSummary]
total: int
has_more: bool
class AssetDetail(BaseModel):
id: str
name: str
asset_hash: str | None = None
size: int | None = None
mime_type: str | None = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
preview_id: str | None = None
created_at: datetime | None = None
last_access_time: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "last_access_time")
def _ser_dt(self, v: datetime | None, _info):
return v.isoformat() if v else None
class TagUsage(BaseModel):
name: str
count: int
type: str
class TagsList(BaseModel):
tags: list[TagUsage] = Field(default_factory=list)
total: int
has_more: bool

View File

@ -1,188 +0,0 @@
import os
import uuid
import sqlalchemy
from typing import Iterable
from sqlalchemy.orm import Session
from sqlalchemy.dialects import sqlite
from app.assets.helpers import utcnow
from app.assets.database.models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, AssetInfoMeta
MAX_BIND_PARAMS = 800
def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]:
if not rows:
return []
rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row))
for i in range(0, len(rows), rows_per_stmt):
yield rows[i:i + rows_per_stmt]
def _iter_chunks(seq, n: int):
for i in range(0, len(seq), n):
yield seq[i:i + n]
def _rows_per_stmt(cols: int) -> int:
return max(1, MAX_BIND_PARAMS // max(1, cols))
def seed_from_paths_batch(
session: Session,
*,
specs: list[dict],
owner_id: str = "",
) -> dict:
"""Each spec is a dict with keys:
- abs_path: str
- size_bytes: int
- mtime_ns: int
- info_name: str
- tags: list[str]
- fname: Optional[str]
"""
if not specs:
return {"inserted_infos": 0, "won_states": 0, "lost_states": 0}
now = utcnow()
asset_rows: list[dict] = []
state_rows: list[dict] = []
path_to_asset: dict[str, str] = {}
asset_to_info: dict[str, dict] = {} # asset_id -> prepared info row
path_list: list[str] = []
for sp in specs:
ap = os.path.abspath(sp["abs_path"])
aid = str(uuid.uuid4())
iid = str(uuid.uuid4())
path_list.append(ap)
path_to_asset[ap] = aid
asset_rows.append(
{
"id": aid,
"hash": None,
"size_bytes": sp["size_bytes"],
"mime_type": None,
"created_at": now,
}
)
state_rows.append(
{
"asset_id": aid,
"file_path": ap,
"mtime_ns": sp["mtime_ns"],
}
)
asset_to_info[aid] = {
"id": iid,
"owner_id": owner_id,
"name": sp["info_name"],
"asset_id": aid,
"preview_id": None,
"user_metadata": {"filename": sp["fname"]} if sp["fname"] else None,
"created_at": now,
"updated_at": now,
"last_access_time": now,
"_tags": sp["tags"],
"_filename": sp["fname"],
}
# insert all seed Assets (hash=NULL)
ins_asset = sqlite.insert(Asset)
for chunk in _iter_chunks(asset_rows, _rows_per_stmt(5)):
session.execute(ins_asset, chunk)
# try to claim AssetCacheState (file_path)
winners_by_path: set[str] = set()
ins_state = (
sqlite.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
.returning(AssetCacheState.file_path)
)
for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)):
winners_by_path.update((session.execute(ins_state, chunk)).scalars().all())
all_paths_set = set(path_list)
losers_by_path = all_paths_set - winners_by_path
lost_assets = [path_to_asset[p] for p in losers_by_path]
if lost_assets: # losers get their Asset removed
for id_chunk in _iter_chunks(lost_assets, MAX_BIND_PARAMS):
session.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(id_chunk)))
if not winners_by_path:
return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)}
# insert AssetInfo only for winners
winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path]
ins_info = (
sqlite.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
.returning(AssetInfo.id)
)
inserted_info_ids: set[str] = set()
for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)):
inserted_info_ids.update((session.execute(ins_info, chunk)).scalars().all())
# build and insert tag + meta rows for the AssetInfo
tag_rows: list[dict] = []
meta_rows: list[dict] = []
if inserted_info_ids:
for row in winner_info_rows:
iid = row["id"]
if iid not in inserted_info_ids:
continue
for t in row["_tags"]:
tag_rows.append({
"asset_info_id": iid,
"tag_name": t,
"origin": "automatic",
"added_at": now,
})
if row["_filename"]:
meta_rows.append(
{
"asset_info_id": iid,
"key": "filename",
"ordinal": 0,
"val_str": row["_filename"],
"val_num": None,
"val_bool": None,
"val_json": None,
}
)
bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS)
return {
"inserted_infos": len(inserted_info_ids),
"won_states": len(winners_by_path),
"lost_states": len(losers_by_path),
}
def bulk_insert_tags_and_meta(
session: Session,
*,
tag_rows: list[dict],
meta_rows: list[dict],
max_bind_params: int,
) -> None:
"""Batch insert into asset_info_tags and asset_info_meta with ON CONFLICT DO NOTHING.
- tag_rows keys: asset_info_id, tag_name, origin, added_at
- meta_rows keys: asset_info_id, key, ordinal, val_str, val_num, val_bool, val_json
"""
if tag_rows:
ins_links = (
sqlite.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
for chunk in _chunk_rows(tag_rows, cols_per_row=4, max_bind_params=max_bind_params):
session.execute(ins_links, chunk)
if meta_rows:
ins_meta = (
sqlite.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
)
for chunk in _chunk_rows(meta_rows, cols_per_row=7, max_bind_params=max_bind_params):
session.execute(ins_meta, chunk)

View File

@ -1,233 +0,0 @@
from __future__ import annotations
import uuid
from datetime import datetime
from typing import Any
from sqlalchemy import (
JSON,
BigInteger,
Boolean,
CheckConstraint,
DateTime,
ForeignKey,
Index,
Integer,
Numeric,
String,
Text,
UniqueConstraint,
)
from sqlalchemy.orm import Mapped, foreign, mapped_column, relationship
from app.assets.helpers import utcnow
from app.database.models import to_dict, Base
class Asset(Base):
__tablename__ = "assets"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
hash: Mapped[str | None] = mapped_column(String(256), nullable=True)
size_bytes: Mapped[int] = mapped_column(BigInteger, nullable=False, default=0)
mime_type: Mapped[str | None] = mapped_column(String(255))
created_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
infos: Mapped[list[AssetInfo]] = relationship(
"AssetInfo",
back_populates="asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.asset_id),
foreign_keys=lambda: [AssetInfo.asset_id],
cascade="all,delete-orphan",
passive_deletes=True,
)
preview_of: Mapped[list[AssetInfo]] = relationship(
"AssetInfo",
back_populates="preview_asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.preview_id),
foreign_keys=lambda: [AssetInfo.preview_id],
viewonly=True,
)
cache_states: Mapped[list[AssetCacheState]] = relationship(
back_populates="asset",
cascade="all, delete-orphan",
passive_deletes=True,
)
__table_args__ = (
Index("uq_assets_hash", "hash", unique=True),
Index("ix_assets_mime_type", "mime_type"),
CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
return to_dict(self, include_none=include_none)
def __repr__(self) -> str:
return f"<Asset id={self.id} hash={(self.hash or '')[:12]}>"
class AssetCacheState(Base):
__tablename__ = "asset_cache_state"
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="CASCADE"), nullable=False)
file_path: Mapped[str] = mapped_column(Text, nullable=False)
mtime_ns: Mapped[int | None] = mapped_column(BigInteger, nullable=True)
needs_verify: Mapped[bool] = mapped_column(Boolean, nullable=False, default=False)
asset: Mapped[Asset] = relationship(back_populates="cache_states")
__table_args__ = (
Index("ix_asset_cache_state_file_path", "file_path"),
Index("ix_asset_cache_state_asset_id", "asset_id"),
CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"),
UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
return to_dict(self, include_none=include_none)
def __repr__(self) -> str:
return f"<AssetCacheState id={self.id} asset_id={self.asset_id} path={self.file_path!r}>"
class AssetInfo(Base):
__tablename__ = "assets_info"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
owner_id: Mapped[str] = mapped_column(String(128), nullable=False, default="")
name: Mapped[str] = mapped_column(String(512), nullable=False)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False)
preview_id: Mapped[str | None] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL"))
user_metadata: Mapped[dict[str, Any] | None] = mapped_column(JSON(none_as_null=True))
created_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
updated_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
last_access_time: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
asset: Mapped[Asset] = relationship(
"Asset",
back_populates="infos",
foreign_keys=[asset_id],
lazy="selectin",
)
preview_asset: Mapped[Asset | None] = relationship(
"Asset",
back_populates="preview_of",
foreign_keys=[preview_id],
)
metadata_entries: Mapped[list[AssetInfoMeta]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
)
tag_links: Mapped[list[AssetInfoTag]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
overlaps="tags,asset_infos",
)
tags: Mapped[list[Tag]] = relationship(
secondary="asset_info_tags",
back_populates="asset_infos",
lazy="selectin",
viewonly=True,
overlaps="tag_links,asset_info_links,asset_infos,tag",
)
__table_args__ = (
UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"),
Index("ix_assets_info_owner_name", "owner_id", "name"),
Index("ix_assets_info_owner_id", "owner_id"),
Index("ix_assets_info_asset_id", "asset_id"),
Index("ix_assets_info_name", "name"),
Index("ix_assets_info_created_at", "created_at"),
Index("ix_assets_info_last_access_time", "last_access_time"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
data = to_dict(self, include_none=include_none)
data["tags"] = [t.name for t in self.tags]
return data
def __repr__(self) -> str:
return f"<AssetInfo id={self.id} name={self.name!r} asset_id={self.asset_id}>"
class AssetInfoMeta(Base):
__tablename__ = "asset_info_meta"
asset_info_id: Mapped[str] = mapped_column(
String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True
)
key: Mapped[str] = mapped_column(String(256), primary_key=True)
ordinal: Mapped[int] = mapped_column(Integer, primary_key=True, default=0)
val_str: Mapped[str | None] = mapped_column(String(2048), nullable=True)
val_num: Mapped[float | None] = mapped_column(Numeric(38, 10), nullable=True)
val_bool: Mapped[bool | None] = mapped_column(Boolean, nullable=True)
val_json: Mapped[Any | None] = mapped_column(JSON(none_as_null=True), nullable=True)
asset_info: Mapped[AssetInfo] = relationship(back_populates="metadata_entries")
__table_args__ = (
Index("ix_asset_info_meta_key", "key"),
Index("ix_asset_info_meta_key_val_str", "key", "val_str"),
Index("ix_asset_info_meta_key_val_num", "key", "val_num"),
Index("ix_asset_info_meta_key_val_bool", "key", "val_bool"),
)
class AssetInfoTag(Base):
__tablename__ = "asset_info_tags"
asset_info_id: Mapped[str] = mapped_column(
String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True
)
tag_name: Mapped[str] = mapped_column(
String(512), ForeignKey("tags.name", ondelete="RESTRICT"), primary_key=True
)
origin: Mapped[str] = mapped_column(String(32), nullable=False, default="manual")
added_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
asset_info: Mapped[AssetInfo] = relationship(back_populates="tag_links")
tag: Mapped[Tag] = relationship(back_populates="asset_info_links")
__table_args__ = (
Index("ix_asset_info_tags_tag_name", "tag_name"),
Index("ix_asset_info_tags_asset_info_id", "asset_info_id"),
)
class Tag(Base):
__tablename__ = "tags"
name: Mapped[str] = mapped_column(String(512), primary_key=True)
tag_type: Mapped[str] = mapped_column(String(32), nullable=False, default="user")
asset_info_links: Mapped[list[AssetInfoTag]] = relationship(
back_populates="tag",
overlaps="asset_infos,tags",
)
asset_infos: Mapped[list[AssetInfo]] = relationship(
secondary="asset_info_tags",
back_populates="tags",
viewonly=True,
overlaps="asset_info_links,tag_links,tags,asset_info",
)
__table_args__ = (
Index("ix_tags_tag_type", "tag_type"),
)
def __repr__(self) -> str:
return f"<Tag {self.name}>"

View File

@ -1,267 +0,0 @@
import sqlalchemy as sa
from collections import defaultdict
from sqlalchemy import select, exists, func
from sqlalchemy.orm import Session, contains_eager, noload
from app.assets.database.models import Asset, AssetInfo, AssetInfoMeta, AssetInfoTag, Tag
from app.assets.helpers import escape_like_prefix, normalize_tags
from typing import Sequence
def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement:
"""Build owner visibility predicate for reads. Owner-less rows are visible to everyone."""
owner_id = (owner_id or "").strip()
if owner_id == "":
return AssetInfo.owner_id == ""
return AssetInfo.owner_id.in_(["", owner_id])
def apply_tag_filters(
stmt: sa.sql.Select,
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
) -> sa.sql.Select:
"""include_tags: every tag must be present; exclude_tags: none may be present."""
include_tags = normalize_tags(include_tags)
exclude_tags = normalize_tags(exclude_tags)
if include_tags:
for tag_name in include_tags:
stmt = stmt.where(
exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name == tag_name)
)
)
if exclude_tags:
stmt = stmt.where(
~exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name.in_(exclude_tags))
)
)
return stmt
def apply_metadata_filter(
stmt: sa.sql.Select,
metadata_filter: dict | None = None,
) -> sa.sql.Select:
"""Apply filters using asset_info_meta projection table."""
if not metadata_filter:
return stmt
def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement:
return sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
*preds,
)
def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement:
if value is None:
no_row_for_key = sa.not_(
sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
)
)
null_row = _exists_for_pred(
key,
AssetInfoMeta.val_json.is_(None),
AssetInfoMeta.val_str.is_(None),
AssetInfoMeta.val_num.is_(None),
AssetInfoMeta.val_bool.is_(None),
)
return sa.or_(no_row_for_key, null_row)
if isinstance(value, bool):
return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value))
if isinstance(value, (int, float)):
from decimal import Decimal
num = value if isinstance(value, Decimal) else Decimal(str(value))
return _exists_for_pred(key, AssetInfoMeta.val_num == num)
if isinstance(value, str):
return _exists_for_pred(key, AssetInfoMeta.val_str == value)
return _exists_for_pred(key, AssetInfoMeta.val_json == value)
for k, v in metadata_filter.items():
if isinstance(v, list):
ors = [_exists_clause_for_value(k, elem) for elem in v]
if ors:
stmt = stmt.where(sa.or_(*ors))
else:
stmt = stmt.where(_exists_clause_for_value(k, v))
return stmt
def asset_exists_by_hash(session: Session, asset_hash: str) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
row = (
session.execute(
select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1)
)
).first()
return row is not None
def get_asset_info_by_id(session: Session, asset_info_id: str) -> AssetInfo | None:
return session.get(AssetInfo, asset_info_id)
def list_asset_infos_page(
session: Session,
owner_id: str = "",
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
metadata_filter: dict | None = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
) -> tuple[list[AssetInfo], dict[str, list[str]], int]:
base = (
select(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags))
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
base = apply_tag_filters(base, include_tags, exclude_tags)
base = apply_metadata_filter(base, metadata_filter)
sort = (sort or "created_at").lower()
order = (order or "desc").lower()
sort_map = {
"name": AssetInfo.name,
"created_at": AssetInfo.created_at,
"updated_at": AssetInfo.updated_at,
"last_access_time": AssetInfo.last_access_time,
"size": Asset.size_bytes,
}
sort_col = sort_map.get(sort, AssetInfo.created_at)
sort_exp = sort_col.desc() if order == "desc" else sort_col.asc()
base = base.order_by(sort_exp).limit(limit).offset(offset)
count_stmt = (
select(sa.func.count())
.select_from(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags)
count_stmt = apply_metadata_filter(count_stmt, metadata_filter)
total = int((session.execute(count_stmt)).scalar_one() or 0)
infos = (session.execute(base)).unique().scalars().all()
id_list: list[str] = [i.id for i in infos]
tag_map: dict[str, list[str]] = defaultdict(list)
if id_list:
rows = session.execute(
select(AssetInfoTag.asset_info_id, Tag.name)
.join(Tag, Tag.name == AssetInfoTag.tag_name)
.where(AssetInfoTag.asset_info_id.in_(id_list))
)
for aid, tag_name in rows.all():
tag_map[aid].append(tag_name)
return infos, tag_map, total
def fetch_asset_info_asset_and_tags(
session: Session,
asset_info_id: str,
owner_id: str = "",
) -> tuple[AssetInfo, Asset, list[str]] | None:
stmt = (
select(AssetInfo, Asset, Tag.name)
.join(Asset, Asset.id == AssetInfo.asset_id)
.join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True)
.join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.options(noload(AssetInfo.tags))
.order_by(Tag.name.asc())
)
rows = (session.execute(stmt)).all()
if not rows:
return None
first_info, first_asset, _ = rows[0]
tags: list[str] = []
seen: set[str] = set()
for _info, _asset, tag_name in rows:
if tag_name and tag_name not in seen:
seen.add(tag_name)
tags.append(tag_name)
return first_info, first_asset, tags
def list_tags_with_usage(
session: Session,
prefix: str | None = None,
limit: int = 100,
offset: int = 0,
include_zero: bool = True,
order: str = "count_desc",
owner_id: str = "",
) -> tuple[list[tuple[str, str, int]], int]:
counts_sq = (
select(
AssetInfoTag.tag_name.label("tag_name"),
func.count(AssetInfoTag.asset_info_id).label("cnt"),
)
.select_from(AssetInfoTag)
.join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id)
.where(visible_owner_clause(owner_id))
.group_by(AssetInfoTag.tag_name)
.subquery()
)
q = (
select(
Tag.name,
Tag.tag_type,
func.coalesce(counts_sq.c.cnt, 0).label("count"),
)
.select_from(Tag)
.join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True)
)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
q = q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0)
if order == "name_asc":
q = q.order_by(Tag.name.asc())
else:
q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc())
total_q = select(func.count()).select_from(Tag)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
total_q = total_q.where(
Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name))
)
rows = (session.execute(q.limit(limit).offset(offset))).all()
total = (session.execute(total_q)).scalar_one()
rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows]
return rows_norm, int(total or 0)

View File

@ -1,62 +0,0 @@
from typing import Iterable
import sqlalchemy
from sqlalchemy.orm import Session
from sqlalchemy.dialects import sqlite
from app.assets.helpers import normalize_tags, utcnow
from app.assets.database.models import Tag, AssetInfoTag, AssetInfo
def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
ins = (
sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
return session.execute(ins)
def add_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
origin: str = "automatic",
) -> None:
select_rows = (
sqlalchemy.select(
AssetInfo.id.label("asset_info_id"),
sqlalchemy.literal("missing").label("tag_name"),
sqlalchemy.literal(origin).label("origin"),
sqlalchemy.literal(utcnow()).label("added_at"),
)
.where(AssetInfo.asset_id == asset_id)
.where(
sqlalchemy.not_(
sqlalchemy.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing"))
)
)
)
session.execute(
sqlite.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
def remove_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
) -> None:
session.execute(
sqlalchemy.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sqlalchemy.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)

View File

@ -1,75 +0,0 @@
from blake3 import blake3
from typing import IO
import os
import asyncio
DEFAULT_CHUNK = 8 * 1024 *1024 # 8MB
# NOTE: this allows hashing different representations of a file-like object
def blake3_hash(
fp: str | IO[bytes],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""
Returns a BLAKE3 hex digest for ``fp``, which may be:
- a filename (str/bytes) or PathLike
- an open binary file object
If ``fp`` is a file object, it must be opened in **binary** mode and support
``read``, ``seek``, and ``tell``. The function will seek to the start before
reading and will attempt to restore the original position afterward.
"""
# duck typing to check if input is a file-like object
if hasattr(fp, "read"):
return _hash_file_obj(fp, chunk_size)
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj(f, chunk_size)
async def blake3_hash_async(
fp: str | IO[bytes],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Async wrapper for ``blake3_hash_sync``.
Uses a worker thread so the event loop remains responsive.
"""
# If it is a path, open inside the worker thread to keep I/O off the loop.
if hasattr(fp, "read"):
return await asyncio.to_thread(blake3_hash, fp, chunk_size)
def _worker() -> str:
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj(f, chunk_size)
return await asyncio.to_thread(_worker)
def _hash_file_obj(file_obj: IO, chunk_size: int = DEFAULT_CHUNK) -> str:
"""
Hash an already-open binary file object by streaming in chunks.
- Seeks to the beginning before reading (if supported).
- Restores the original position afterward (if tell/seek are supported).
"""
if chunk_size <= 0:
chunk_size = DEFAULT_CHUNK
# in case file object is already open and not at the beginning, track so can be restored after hashing
orig_pos = file_obj.tell()
try:
# seek to the beginning before reading
if orig_pos != 0:
file_obj.seek(0)
h = blake3()
while True:
chunk = file_obj.read(chunk_size)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
finally:
# restore original position in file object, if needed
if orig_pos != 0:
file_obj.seek(orig_pos)

View File

@ -1,217 +0,0 @@
import contextlib
import os
from aiohttp import web
from datetime import datetime, timezone
from pathlib import Path
from typing import Literal, Any
import folder_paths
RootType = Literal["models", "input", "output"]
ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output")
def get_query_dict(request: web.Request) -> dict[str, Any]:
"""
Gets a dictionary of query parameters from the request.
'request.query' is a MultiMapping[str], needs to be converted to a dictionary to be validated by Pydantic.
"""
query_dict = {
key: request.query.getall(key) if len(request.query.getall(key)) > 1 else request.query.get(key)
for key in request.query.keys()
}
return query_dict
def list_tree(base_dir: str) -> list[str]:
out: list[str] = []
base_abs = os.path.abspath(base_dir)
if not os.path.isdir(base_abs):
return out
for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False):
for name in filenames:
out.append(os.path.abspath(os.path.join(dirpath, name)))
return out
def prefixes_for_root(root: RootType) -> list[str]:
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
return [os.path.abspath(p) for p in bases]
if root == "input":
return [os.path.abspath(folder_paths.get_input_directory())]
if root == "output":
return [os.path.abspath(folder_paths.get_output_directory())]
return []
def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]:
"""Escapes %, _ and the escape char itself in a LIKE prefix.
Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like().
"""
s = s.replace(escape, escape + escape) # escape the escape char first
s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards
return s, escape
def fast_asset_file_check(
*,
mtime_db: int | None,
size_db: int | None,
stat_result: os.stat_result,
) -> bool:
if mtime_db is None:
return False
actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000))
if int(mtime_db) != int(actual_mtime_ns):
return False
sz = int(size_db or 0)
if sz > 0:
return int(stat_result.st_size) == sz
return True
def utcnow() -> datetime:
"""Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC."""
return datetime.now(timezone.utc).replace(tzinfo=None)
def get_comfy_models_folders() -> list[tuple[str, list[str]]]:
"""Build a list of (folder_name, base_paths[]) categories that are configured for model locations.
We trust `folder_paths.folder_names_and_paths` and include a category if
*any* of its base paths lies under the Comfy `models_dir`.
"""
targets: list[tuple[str, list[str]]] = []
models_root = os.path.abspath(folder_paths.models_dir)
for name, values in folder_paths.folder_names_and_paths.items():
paths, _exts = values[0], values[1] # NOTE: this prevents nodepacks that hackily edit folder_... from breaking ComfyUI
if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths):
targets.append((name, paths))
return targets
def compute_relative_filename(file_path: str) -> str | None:
"""
Return the model's path relative to the last well-known folder (the model category),
using forward slashes, eg:
/.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors"
/.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors"
For non-model paths, returns None.
NOTE: this is a temporary helper, used only for initializing metadata["filename"] field.
"""
try:
root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path)
except ValueError:
return None
p = Path(rel_path)
parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)]
if not parts:
return None
if root_category == "models":
# parts[0] is the category ("checkpoints", "vae", etc) drop it
inside = parts[1:] if len(parts) > 1 else [parts[0]]
return "/".join(inside)
return "/".join(parts) # input/output: keep all parts
def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]:
"""Given an absolute or relative file path, determine which root category the path belongs to:
- 'input' if the file resides under `folder_paths.get_input_directory()`
- 'output' if the file resides under `folder_paths.get_output_directory()`
- 'models' if the file resides under any base path of categories returned by `get_comfy_models_folders()`
Returns:
(root_category, relative_path_inside_that_root)
For 'models', the relative path is prefixed with the category name:
e.g. ('models', 'vae/test/sub/ae.safetensors')
Raises:
ValueError: if the path does not belong to input, output, or configured model bases.
"""
fp_abs = os.path.abspath(file_path)
def _is_within(child: str, parent: str) -> bool:
try:
return os.path.commonpath([child, parent]) == parent
except Exception:
return False
def _rel(child: str, parent: str) -> str:
return os.path.relpath(os.path.join(os.sep, os.path.relpath(child, parent)), os.sep)
# 1) input
input_base = os.path.abspath(folder_paths.get_input_directory())
if _is_within(fp_abs, input_base):
return "input", _rel(fp_abs, input_base)
# 2) output
output_base = os.path.abspath(folder_paths.get_output_directory())
if _is_within(fp_abs, output_base):
return "output", _rel(fp_abs, output_base)
# 3) models (check deepest matching base to avoid ambiguity)
best: tuple[int, str, str] | None = None # (base_len, bucket, rel_inside_bucket)
for bucket, bases in get_comfy_models_folders():
for b in bases:
base_abs = os.path.abspath(b)
if not _is_within(fp_abs, base_abs):
continue
cand = (len(base_abs), bucket, _rel(fp_abs, base_abs))
if best is None or cand[0] > best[0]:
best = cand
if best is not None:
_, bucket, rel_inside = best
combined = os.path.join(bucket, rel_inside)
return "models", os.path.relpath(os.path.join(os.sep, combined), os.sep)
raise ValueError(f"Path is not within input, output, or configured model bases: {file_path}")
def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]:
"""Return a tuple (name, tags) derived from a filesystem path.
Semantics:
- Root category is determined by `get_relative_to_root_category_path_of_asset`.
- The returned `name` is the base filename with extension from the relative path.
- The returned `tags` are:
[root_category] + parent folders of the relative path (in order)
For 'models', this means:
file '/.../ModelsDir/vae/test_tag/ae.safetensors'
-> root_category='models', some_path='vae/test_tag/ae.safetensors'
-> name='ae.safetensors', tags=['models', 'vae', 'test_tag']
Raises:
ValueError: if the path does not belong to input, output, or configured model bases.
"""
root_category, some_path = get_relative_to_root_category_path_of_asset(file_path)
p = Path(some_path)
parent_parts = [part for part in p.parent.parts if part not in (".", "..", p.anchor)]
return p.name, list(dict.fromkeys(normalize_tags([root_category, *parent_parts])))
def normalize_tags(tags: list[str] | None) -> list[str]:
"""
Normalize a list of tags by:
- Stripping whitespace and converting to lowercase.
- Removing duplicates.
"""
return [t.strip().lower() for t in (tags or []) if (t or "").strip()]
def collect_models_files() -> list[str]:
out: list[str] = []
for folder_name, bases in get_comfy_models_folders():
rel_files = folder_paths.get_filename_list(folder_name) or []
for rel_path in rel_files:
abs_path = folder_paths.get_full_path(folder_name, rel_path)
if not abs_path:
continue
abs_path = os.path.abspath(abs_path)
allowed = False
for b in bases:
base_abs = os.path.abspath(b)
with contextlib.suppress(Exception):
if os.path.commonpath([abs_path, base_abs]) == base_abs:
allowed = True
break
if allowed:
out.append(abs_path)
return out

View File

@ -1,123 +0,0 @@
from typing import Sequence
from app.database.db import create_session
from app.assets.api import schemas_out
from app.assets.database.queries import (
asset_exists_by_hash,
fetch_asset_info_asset_and_tags,
list_asset_infos_page,
list_tags_with_usage,
)
def _safe_sort_field(requested: str | None) -> str:
if not requested:
return "created_at"
v = requested.lower()
if v in {"name", "created_at", "updated_at", "size", "last_access_time"}:
return v
return "created_at"
def asset_exists(asset_hash: str) -> bool:
with create_session() as session:
return asset_exists_by_hash(session, asset_hash=asset_hash)
def list_assets(
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
metadata_filter: dict | None = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
owner_id: str = "",
) -> schemas_out.AssetsList:
sort = _safe_sort_field(sort)
order = "desc" if (order or "desc").lower() not in {"asc", "desc"} else order.lower()
with create_session() as session:
infos, tag_map, total = list_asset_infos_page(
session,
owner_id=owner_id,
include_tags=include_tags,
exclude_tags=exclude_tags,
name_contains=name_contains,
metadata_filter=metadata_filter,
limit=limit,
offset=offset,
sort=sort,
order=order,
)
summaries: list[schemas_out.AssetSummary] = []
for info in infos:
asset = info.asset
tags = tag_map.get(info.id, [])
summaries.append(
schemas_out.AssetSummary(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
preview_url=f"/api/assets/{info.id}/content",
created_at=info.created_at,
updated_at=info.updated_at,
last_access_time=info.last_access_time,
)
)
return schemas_out.AssetsList(
assets=summaries,
total=total,
has_more=(offset + len(summaries)) < total,
)
def get_asset(asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail:
with create_session() as session:
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset, tag_names = res
preview_id = info.preview_id
return schemas_out.AssetDetail(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None,
mime_type=asset.mime_type if asset else None,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
)
def list_tags(
prefix: str | None = None,
limit: int = 100,
offset: int = 0,
order: str = "count_desc",
include_zero: bool = True,
owner_id: str = "",
) -> schemas_out.TagsList:
limit = max(1, min(1000, limit))
offset = max(0, offset)
with create_session() as session:
rows, total = list_tags_with_usage(
session,
prefix=prefix,
limit=limit,
offset=offset,
include_zero=include_zero,
order=order,
owner_id=owner_id,
)
tags = [schemas_out.TagUsage(name=name, count=count, type=tag_type) for (name, tag_type, count) in rows]
return schemas_out.TagsList(tags=tags, total=total, has_more=(offset + len(tags)) < total)

View File

@ -1,229 +0,0 @@
import contextlib
import time
import logging
import os
import sqlalchemy
import folder_paths
from app.database.db import create_session, dependencies_available
from app.assets.helpers import (
collect_models_files, compute_relative_filename, fast_asset_file_check, get_name_and_tags_from_asset_path,
list_tree,prefixes_for_root, escape_like_prefix,
RootType
)
from app.assets.database.tags import add_missing_tag_for_asset_id, ensure_tags_exist, remove_missing_tag_for_asset_id
from app.assets.database.bulk_ops import seed_from_paths_batch
from app.assets.database.models import Asset, AssetCacheState, AssetInfo
def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> None:
"""
Scan the given roots and seed the assets into the database.
"""
if not dependencies_available():
if enable_logging:
logging.warning("Database dependencies not available, skipping assets scan")
return
t_start = time.perf_counter()
created = 0
skipped_existing = 0
paths: list[str] = []
try:
existing_paths: set[str] = set()
for r in roots:
try:
survivors: set[str] = _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True)
if survivors:
existing_paths.update(survivors)
except Exception as e:
logging.exception("fast DB scan failed for %s: %s", r, e)
if "models" in roots:
paths.extend(collect_models_files())
if "input" in roots:
paths.extend(list_tree(folder_paths.get_input_directory()))
if "output" in roots:
paths.extend(list_tree(folder_paths.get_output_directory()))
specs: list[dict] = []
tag_pool: set[str] = set()
for p in paths:
abs_p = os.path.abspath(p)
if abs_p in existing_paths:
skipped_existing += 1
continue
try:
stat_p = os.stat(abs_p, follow_symlinks=False)
except OSError:
continue
# skip empty files
if not stat_p.st_size:
continue
name, tags = get_name_and_tags_from_asset_path(abs_p)
specs.append(
{
"abs_path": abs_p,
"size_bytes": stat_p.st_size,
"mtime_ns": getattr(stat_p, "st_mtime_ns", int(stat_p.st_mtime * 1_000_000_000)),
"info_name": name,
"tags": tags,
"fname": compute_relative_filename(abs_p),
}
)
for t in tags:
tag_pool.add(t)
# if no file specs, nothing to do
if not specs:
return
with create_session() as sess:
if tag_pool:
ensure_tags_exist(sess, tag_pool, tag_type="user")
result = seed_from_paths_batch(sess, specs=specs, owner_id="")
created += result["inserted_infos"]
sess.commit()
finally:
if enable_logging:
logging.info(
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)",
roots,
time.perf_counter() - t_start,
created,
skipped_existing,
len(paths),
)
def _fast_db_consistency_pass(
root: RootType,
*,
collect_existing_paths: bool = False,
update_missing_tags: bool = False,
) -> set[str] | None:
"""Fast DB+FS pass for a root:
- Toggle needs_verify per state using fast check
- For hashed assets with at least one fast-ok state in this root: delete stale missing states
- For seed assets with all states missing: delete Asset and its AssetInfos
- Optionally add/remove 'missing' tags based on fast-ok in this root
- Optionally return surviving absolute paths
"""
prefixes = prefixes_for_root(root)
if not prefixes:
return set() if collect_existing_paths else None
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
with create_session() as sess:
rows = (
sess.execute(
sqlalchemy.select(
AssetCacheState.id,
AssetCacheState.file_path,
AssetCacheState.mtime_ns,
AssetCacheState.needs_verify,
AssetCacheState.asset_id,
Asset.hash,
Asset.size_bytes,
)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(sqlalchemy.or_(*conds))
.order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc())
)
).all()
by_asset: dict[str, dict] = {}
for sid, fp, mtime_db, needs_verify, aid, a_hash, a_size in rows:
acc = by_asset.get(aid)
if acc is None:
acc = {"hash": a_hash, "size_db": int(a_size or 0), "states": []}
by_asset[aid] = acc
fast_ok = False
try:
exists = True
fast_ok = fast_asset_file_check(
mtime_db=mtime_db,
size_db=acc["size_db"],
stat_result=os.stat(fp, follow_symlinks=True),
)
except FileNotFoundError:
exists = False
except OSError:
exists = False
acc["states"].append({
"sid": sid,
"fp": fp,
"exists": exists,
"fast_ok": fast_ok,
"needs_verify": bool(needs_verify),
})
to_set_verify: list[int] = []
to_clear_verify: list[int] = []
stale_state_ids: list[int] = []
survivors: set[str] = set()
for aid, acc in by_asset.items():
a_hash = acc["hash"]
states = acc["states"]
any_fast_ok = any(s["fast_ok"] for s in states)
all_missing = all(not s["exists"] for s in states)
for s in states:
if not s["exists"]:
continue
if s["fast_ok"] and s["needs_verify"]:
to_clear_verify.append(s["sid"])
if not s["fast_ok"] and not s["needs_verify"]:
to_set_verify.append(s["sid"])
if a_hash is None:
if states and all_missing: # remove seed Asset completely, if no valid AssetCache exists
sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id == aid))
asset = sess.get(Asset, aid)
if asset:
sess.delete(asset)
else:
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
continue
if any_fast_ok: # if Asset has at least one valid AssetCache record, remove any invalid AssetCache records
for s in states:
if not s["exists"]:
stale_state_ids.append(s["sid"])
if update_missing_tags:
with contextlib.suppress(Exception):
remove_missing_tag_for_asset_id(sess, asset_id=aid)
elif update_missing_tags:
with contextlib.suppress(Exception):
add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
if stale_state_ids:
sess.execute(sqlalchemy.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids)))
if to_set_verify:
sess.execute(
sqlalchemy.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_set_verify))
.values(needs_verify=True)
)
if to_clear_verify:
sess.execute(
sqlalchemy.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_clear_verify))
.values(needs_verify=False)
)
sess.commit()
return survivors if collect_existing_paths else None

View File

@ -1,21 +1,14 @@
from typing import Any
from datetime import datetime
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import declarative_base
class Base(DeclarativeBase):
pass
Base = declarative_base()
def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]:
def to_dict(obj):
fields = obj.__table__.columns.keys()
out: dict[str, Any] = {}
for field in fields:
val = getattr(obj, field)
if val is None and not include_none:
continue
if isinstance(val, datetime):
out[field] = val.isoformat()
else:
out[field] = val
return out
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

View File

@ -231,7 +231,6 @@ database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
parser.add_argument("--disable-assets-autoscan", action="store_true", help="Disable asset scanning on startup for database synchronization.")
if comfy.options.args_parsing:
args = parser.parse_args()

View File

@ -3,8 +3,8 @@ import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm
import comfy.model_management
import comfy.model_patcher
import model_management
import model_patcher
class SRResidualCausalBlock3D(nn.Module):
def __init__(self, channels: int):
@ -103,13 +103,13 @@ UPSAMPLERS = {
class HunyuanVideo15SRModel():
def __init__(self, model_type, config):
self.load_device = comfy.model_management.vae_device()
offload_device = comfy.model_management.vae_offload_device()
self.dtype = comfy.model_management.vae_dtype(self.load_device)
self.load_device = model_management.vae_device()
offload_device = model_management.vae_offload_device()
self.dtype = model_management.vae_dtype(self.load_device)
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
@ -118,5 +118,5 @@ class HunyuanVideo15SRModel():
return self.model.state_dict()
def resample_latent(self, latent):
comfy.model_management.load_model_gpu(self.patcher)
model_management.load_model_gpu(self.patcher)
return self.model(latent.to(self.load_device))

View File

@ -237,8 +237,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
else:
dit_config["vec_in_dim"] = None
dit_config["num_heads"] = dit_config["hidden_size"] // sum(dit_config["axes_dim"])
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma

View File

@ -22,6 +22,7 @@ from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import importlib
import platform
import weakref
import gc
@ -348,27 +349,15 @@ try:
except:
rocm_version = (6, -1)
def aotriton_supported(gpu_arch):
path = torch.__path__[0]
path = os.path.join(os.path.join(path, "lib"), "aotriton.images")
gfx = set(map(lambda a: a[4:], filter(lambda a: a.startswith("amd-gfx"), os.listdir(path))))
if gpu_arch in gfx:
return True
if "{}x".format(gpu_arch[:-1]) in gfx:
return True
if "{}xx".format(gpu_arch[:-2]) in gfx:
return True
return False
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if aotriton_supported(arch): # AMD efficient attention implementation depends on aotriton.
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
if rocm_version >= (7, 0):
if any((a in arch) for a in ["gfx1200", "gfx1201"]):
if any((a in arch) for a in ["gfx1201"]):
ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0

View File

@ -718,7 +718,6 @@ class ModelPatcher:
continue
cast_weight = self.force_cast_weights
m.comfy_force_cast_weights = self.force_cast_weights
if lowvram_weight:
if hasattr(m, "comfy_cast_weights"):
m.weight_function = []
@ -791,12 +790,11 @@ class ModelPatcher:
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
if lowvram_counter > 0:
logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load))
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)

View File

@ -546,8 +546,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
logging.warning(f"Missing weight for layer {layer_name}")
return
raise ValueError(f"Missing weight for layer {layer_name}")
manually_loaded_keys = [weight_key]
@ -625,29 +624,21 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
missing_keys.remove(key)
def state_dict(self, *args, destination=None, prefix="", **kwargs):
if destination is not None:
sd = destination
else:
sd = {}
if self.bias is not None:
sd["{}bias".format(prefix)] = self.bias
sd = super().state_dict(*args, destination=destination, prefix=prefix, **kwargs)
if isinstance(self.weight, QuantizedTensor):
sd_out = self.weight.state_dict("{}weight".format(prefix))
for k in sd_out:
sd[k] = sd_out[k]
layout_cls = self.weight._layout_cls
# Check if it's any FP8 variant (E4M3 or E5M2)
if layout_cls in ("TensorCoreFP8E4M3Layout", "TensorCoreFP8E5M2Layout", "TensorCoreFP8Layout"):
sd["{}weight_scale".format(prefix)] = self.weight._params.scale
elif layout_cls == "TensorCoreNVFP4Layout":
sd["{}weight_scale_2".format(prefix)] = self.weight._params.scale
sd["{}weight_scale".format(prefix)] = self.weight._params.block_scale
quant_conf = {"format": self.quant_format}
if self._full_precision_mm_config:
quant_conf["full_precision_matrix_mult"] = True
sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8)
input_scale = getattr(self, 'input_scale', None)
if input_scale is not None:
sd["{}input_scale".format(prefix)] = input_scale
else:
sd["{}weight".format(prefix)] = self.weight
return sd
def _forward(self, input, weight, bias):
@ -663,29 +654,29 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
run_every_op()
input_shape = input.shape
reshaped_3d = False
tensor_3d = input.ndim == 3
if self._full_precision_mm or self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
not getattr(self, 'comfy_force_cast_weights', False) and
len(self.weight_function) == 0 and len(self.bias_function) == 0):
not isinstance(input, QuantizedTensor)):
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input
if tensor_3d:
input = input.reshape(-1, input_shape[2])
# Fall back to non-quantized for non-2D tensors
if input_reshaped.ndim == 2:
reshaped_3d = input.ndim == 3
# dtype is now implicit in the layout class
scale = getattr(self, 'input_scale', None)
if scale is not None:
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
if input.ndim != 2:
# Fall back to comfy_cast_weights for non-2D tensors
return self.forward_comfy_cast_weights(input.reshape(input_shape), *args, **kwargs)
output = self.forward_comfy_cast_weights(input)
# dtype is now implicit in the layout class
input = QuantizedTensor.from_float(input, self.layout_type, scale=getattr(self, 'input_scale', None))
output = self._forward(input, self.weight, self.bias)
# Reshape output back to 3D if input was 3D
if reshaped_3d:
if tensor_3d:
output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0]))
return output

View File

@ -19,7 +19,6 @@ try:
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
if cuda_version < (13,):
ck.registry.disable("cuda")
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
ck.registry.disable("triton")
for k, v in ck.list_backends().items():

View File

@ -218,7 +218,7 @@ class CLIP:
if unprojected:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(tokens)
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
all_hooks.reset()
self.patcher.patch_hooks(None)
@ -266,7 +266,7 @@ class CLIP:
if return_pooled == "unprojected":
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(tokens)
self.load_model()
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
@ -299,11 +299,8 @@ class CLIP:
sd_clip[k] = sd_tokenizer[k]
return sd_clip
def load_model(self, tokens={}):
memory_used = 0
if hasattr(self.cond_stage_model, "memory_estimation_function"):
memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
def load_model(self):
model_management.load_model_gpu(self.patcher)
return self.patcher
def get_key_patches(self):
@ -479,8 +476,8 @@ class VAE:
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config)
self.latent_channels = 128
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (1200 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (80 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
self.upscale_index_formula = (8, 32, 32)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
@ -1059,9 +1056,9 @@ def detect_te_model(sd):
return TEModel.JINA_CLIP_2
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
if weight.shape[0] == 10240:
if weight.shape[-1] == 4096:
return TEModel.T5_XXL
elif weight.shape[0] == 5120:
elif weight.shape[-1] == 2048:
return TEModel.T5_XL
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD

View File

@ -845,7 +845,7 @@ class LTXAV(LTXV):
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 0.061 # TODO
self.memory_usage_factor = 0.055 # TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXAV(self, device=device)

View File

@ -36,7 +36,7 @@ def te(dtype_t5=None, t5_quantization_metadata=None):
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype_t5 is not None:
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return CosmosTEModel_

View File

@ -32,7 +32,7 @@ def mochi_te(dtype_t5=None, t5_quantization_metadata=None):
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype_t5 is not None:
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return MochiTEModel_

View File

@ -36,10 +36,10 @@ class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
class Gemma3_12BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
@ -98,13 +98,10 @@ class LTXAVTEModel(torch.nn.Module):
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
out_device = out.device
if comfy.model_management.should_use_bf16(self.execution_device):
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
out = out.movedim(1, -1).to(self.execution_device)
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
out = out.reshape((out.shape[0], out.shape[1], -1))
out = self.text_embedding_projection(out)
out = out.float()
out_vid = self.video_embeddings_connector(out)[0]
out_audio = self.audio_embeddings_connector(out)[0]
out = torch.concat((out_vid, out_audio), dim=-1)
@ -121,21 +118,13 @@ class LTXAVTEModel(torch.nn.Module):
return self.load_state_dict(sdo, strict=False)
def memory_estimation_function(self, token_weight_pairs, device=None):
constant = 6.0
if comfy.model_management.should_use_bf16(device):
constant /= 2.0
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
return num_tokens * constant * 1024 * 1024
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
class LTXAVTEModel_(LTXAVTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
model_options["llama_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)

View File

@ -36,7 +36,7 @@ def pixart_te(dtype_t5=None, t5_quantization_metadata=None):
if t5_quantization_metadata is not None:
model_options = model_options.copy()
model_options["t5xxl_quantization_metadata"] = t5_quantization_metadata
if dtype_t5 is not None:
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return PixArtTEModel_

View File

@ -1113,18 +1113,6 @@ class DynamicSlot(ComfyTypeI):
out_dict[input_type][finalized_id] = value
out_dict["dynamic_paths"][finalized_id] = finalize_prefix(curr_prefix, curr_prefix[-1])
@comfytype(io_type="IMAGECOMPARE")
class ImageCompare(ComfyTypeI):
Type = dict
class Input(WidgetInput):
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
socketless: bool=True):
super().__init__(id, display_name, optional, tooltip, None, None, socketless)
def as_dict(self):
return super().as_dict()
DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {}
def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]):
DYNAMIC_INPUT_LOOKUP[io_type] = func
@ -1970,5 +1958,4 @@ __all__ = [
"add_to_dict_v1",
"add_to_dict_v3",
"V3Data",
"ImageCompare",
]

View File

@ -1,41 +0,0 @@
from pydantic import BaseModel, Field
class SubjectReference(BaseModel):
id: str = Field(...)
images: list[str] = Field(...)
class TaskCreationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(..., max_length=2000)
duration: int = Field(...)
seed: int = Field(..., ge=0, le=2147483647)
aspect_ratio: str | None = Field(None)
resolution: str | None = Field(None)
movement_amplitude: str | None = Field(None)
images: list[str] | None = Field(None, description="Base64 encoded string or image URL")
subjects: list[SubjectReference] | None = Field(None)
bgm: bool | None = Field(None)
audio: bool | None = Field(None)
class TaskCreationResponse(BaseModel):
task_id: str = Field(...)
state: str = Field(...)
created_at: str = Field(...)
code: int | None = Field(None, description="Error code")
class TaskResult(BaseModel):
id: str = Field(..., description="Creation id")
url: str = Field(..., description="The URL of the generated results, valid for one hour")
cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour")
class TaskStatusResponse(BaseModel):
state: str = Field(...)
err_code: str | None = Field(None)
progress: float | None = Field(None)
credits: int | None = Field(None)
creations: list[TaskResult] = Field(..., description="Generated results")

View File

@ -567,7 +567,7 @@ async def execute_lipsync(
# Upload the audio file to Comfy API and get download URL
if audio:
audio_url = await upload_audio_to_comfyapi(
cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg"
cls, audio, container_format="mp3", codec_name="libmp3lame", mime_type="audio/mpeg", filename="output.mp3"
)
logging.info("Uploaded audio to Comfy API. URL: %s", audio_url)
else:

View File

@ -2,6 +2,7 @@ import builtins
from io import BytesIO
import aiohttp
import torch
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
@ -137,7 +138,7 @@ class TopazImageEnhance(IO.ComfyNode):
async def execute(
cls,
model: str,
image: Input.Image,
image: torch.Tensor,
prompt: str = "",
subject_detection: str = "All",
face_enhancement: bool = True,
@ -152,9 +153,7 @@ class TopazImageEnhance(IO.ComfyNode):
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Only one input image is supported.")
download_url = await upload_images_to_comfyapi(
cls, image, max_images=1, mime_type="image/png", total_pixels=4096*4096
)
download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png")
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"),

View File

@ -1,13 +1,12 @@
import logging
from enum import Enum
from typing import Literal, Optional, TypeVar
import torch
from pydantic import BaseModel, Field
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.vidu import (
SubjectReference,
TaskCreationRequest,
TaskCreationResponse,
TaskResult,
TaskStatusResponse,
)
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_video_output,
@ -18,7 +17,6 @@ from comfy_api_nodes.util import (
validate_image_aspect_ratio,
validate_image_dimensions,
validate_images_aspect_ratio_closeness,
validate_string,
)
VIDU_TEXT_TO_VIDEO = "/proxy/vidu/text2video"
@ -27,33 +25,98 @@ VIDU_REFERENCE_VIDEO = "/proxy/vidu/reference2video"
VIDU_START_END_VIDEO = "/proxy/vidu/start-end2video"
VIDU_GET_GENERATION_STATUS = "/proxy/vidu/tasks/%s/creations"
R = TypeVar("R")
class VideoModelName(str, Enum):
vidu_q1 = "viduq1"
class AspectRatio(str, Enum):
r_16_9 = "16:9"
r_9_16 = "9:16"
r_1_1 = "1:1"
class Resolution(str, Enum):
r_1080p = "1080p"
class MovementAmplitude(str, Enum):
auto = "auto"
small = "small"
medium = "medium"
large = "large"
class TaskCreationRequest(BaseModel):
model: VideoModelName = VideoModelName.vidu_q1
prompt: Optional[str] = Field(None, max_length=1500)
duration: Optional[Literal[5]] = 5
seed: Optional[int] = Field(0, ge=0, le=2147483647)
aspect_ratio: Optional[AspectRatio] = AspectRatio.r_16_9
resolution: Optional[Resolution] = Resolution.r_1080p
movement_amplitude: Optional[MovementAmplitude] = MovementAmplitude.auto
images: Optional[list[str]] = Field(None, description="Base64 encoded string or image URL")
class TaskCreationResponse(BaseModel):
task_id: str = Field(...)
state: str = Field(...)
created_at: str = Field(...)
code: Optional[int] = Field(None, description="Error code")
class TaskResult(BaseModel):
id: str = Field(..., description="Creation id")
url: str = Field(..., description="The URL of the generated results, valid for one hour")
cover_url: str = Field(..., description="The cover URL of the generated results, valid for one hour")
class TaskStatusResponse(BaseModel):
state: str = Field(...)
err_code: Optional[str] = Field(None)
creations: list[TaskResult] = Field(..., description="Generated results")
def get_video_url_from_response(response) -> Optional[str]:
if response.creations:
return response.creations[0].url
return None
def get_video_from_response(response) -> TaskResult:
if not response.creations:
error_msg = f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}"
logging.info(error_msg)
raise RuntimeError(error_msg)
logging.info("Vidu task %s succeeded. Video URL: %s", response.creations[0].id, response.creations[0].url)
return response.creations[0]
async def execute_task(
cls: type[IO.ComfyNode],
vidu_endpoint: str,
payload: TaskCreationRequest,
) -> list[TaskResult]:
task_creation_response = await sync_op(
estimated_duration: int,
) -> R:
response = await sync_op(
cls,
endpoint=ApiEndpoint(path=vidu_endpoint, method="POST"),
response_model=TaskCreationResponse,
data=payload,
)
if task_creation_response.state == "failed":
raise RuntimeError(f"Vidu request failed. Code: {task_creation_response.code}")
response = await poll_op(
if response.state == "failed":
error_msg = f"Vidu request failed. Code: {response.code}"
logging.error(error_msg)
raise RuntimeError(error_msg)
return await poll_op(
cls,
ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % task_creation_response.task_id),
ApiEndpoint(path=VIDU_GET_GENERATION_STATUS % response.task_id),
response_model=TaskStatusResponse,
status_extractor=lambda r: r.state,
progress_extractor=lambda r: r.progress,
max_poll_attempts=320,
estimated_duration=estimated_duration,
)
if not response.creations:
raise RuntimeError(
f"Vidu request does not contain results. State: {response.state}, Error Code: {response.err_code}"
)
return response.creations
class ViduTextToVideoNode(IO.ComfyNode):
@ -64,9 +127,14 @@ class ViduTextToVideoNode(IO.ComfyNode):
node_id="ViduTextToVideoNode",
display_name="Vidu Text To Video Generation",
category="api node/video/Vidu",
description="Generate video from a text prompt",
description="Generate video from text prompt",
inputs=[
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
IO.Combo.Input(
"model",
options=VideoModelName,
default=VideoModelName.vidu_q1,
tooltip="Model name",
),
IO.String.Input(
"prompt",
multiline=True,
@ -95,19 +163,22 @@ class ViduTextToVideoNode(IO.ComfyNode):
),
IO.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16", "1:1"],
options=AspectRatio,
default=AspectRatio.r_16_9,
tooltip="The aspect ratio of the output video",
optional=True,
),
IO.Combo.Input(
"resolution",
options=["1080p"],
options=Resolution,
default=Resolution.r_1080p,
tooltip="Supported values may vary by model & duration",
optional=True,
),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
options=MovementAmplitude,
default=MovementAmplitude.auto,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
@ -137,7 +208,7 @@ class ViduTextToVideoNode(IO.ComfyNode):
if not prompt:
raise ValueError("The prompt field is required and cannot be empty.")
payload = TaskCreationRequest(
model=model,
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
@ -145,8 +216,8 @@ class ViduTextToVideoNode(IO.ComfyNode):
resolution=resolution,
movement_amplitude=movement_amplitude,
)
results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
results = await execute_task(cls, VIDU_TEXT_TO_VIDEO, payload, 320)
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduImageToVideoNode(IO.ComfyNode):
@ -159,7 +230,12 @@ class ViduImageToVideoNode(IO.ComfyNode):
category="api node/video/Vidu",
description="Generate video from image and optional prompt",
inputs=[
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
IO.Combo.Input(
"model",
options=VideoModelName,
default=VideoModelName.vidu_q1,
tooltip="Model name",
),
IO.Image.Input(
"image",
tooltip="An image to be used as the start frame of the generated video",
@ -194,13 +270,15 @@ class ViduImageToVideoNode(IO.ComfyNode):
),
IO.Combo.Input(
"resolution",
options=["1080p"],
options=Resolution,
default=Resolution.r_1080p,
tooltip="Supported values may vary by model & duration",
optional=True,
),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
options=MovementAmplitude,
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
@ -220,7 +298,7 @@ class ViduImageToVideoNode(IO.ComfyNode):
async def execute(
cls,
model: str,
image: Input.Image,
image: torch.Tensor,
prompt: str,
duration: int,
seed: int,
@ -231,7 +309,7 @@ class ViduImageToVideoNode(IO.ComfyNode):
raise ValueError("Only one input image is allowed.")
validate_image_aspect_ratio(image, (1, 4), (4, 1))
payload = TaskCreationRequest(
model=model,
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
@ -244,8 +322,8 @@ class ViduImageToVideoNode(IO.ComfyNode):
max_images=1,
mime_type="image/png",
)
results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
results = await execute_task(cls, VIDU_IMAGE_TO_VIDEO, payload, 120)
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduReferenceVideoNode(IO.ComfyNode):
@ -256,9 +334,14 @@ class ViduReferenceVideoNode(IO.ComfyNode):
node_id="ViduReferenceVideoNode",
display_name="Vidu Reference To Video Generation",
category="api node/video/Vidu",
description="Generate video from multiple images and a prompt",
description="Generate video from multiple images and prompt",
inputs=[
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
IO.Combo.Input(
"model",
options=VideoModelName,
default=VideoModelName.vidu_q1,
tooltip="Model name",
),
IO.Image.Input(
"images",
tooltip="Images to use as references to generate a video with consistent subjects (max 7 images).",
@ -291,19 +374,22 @@ class ViduReferenceVideoNode(IO.ComfyNode):
),
IO.Combo.Input(
"aspect_ratio",
options=["16:9", "9:16", "1:1"],
options=AspectRatio,
default=AspectRatio.r_16_9,
tooltip="The aspect ratio of the output video",
optional=True,
),
IO.Combo.Input(
"resolution",
options=["1080p"],
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
@ -323,7 +409,7 @@ class ViduReferenceVideoNode(IO.ComfyNode):
async def execute(
cls,
model: str,
images: Input.Image,
images: torch.Tensor,
prompt: str,
duration: int,
seed: int,
@ -340,7 +426,7 @@ class ViduReferenceVideoNode(IO.ComfyNode):
validate_image_aspect_ratio(image, (1, 4), (4, 1))
validate_image_dimensions(image, min_width=128, min_height=128)
payload = TaskCreationRequest(
model=model,
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
@ -354,8 +440,8 @@ class ViduReferenceVideoNode(IO.ComfyNode):
max_images=7,
mime_type="image/png",
)
results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload, 120)
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduStartEndToVideoNode(IO.ComfyNode):
@ -368,7 +454,12 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
category="api node/video/Vidu",
description="Generate a video from start and end frames and a prompt",
inputs=[
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
IO.Combo.Input(
"model",
options=[model.value for model in VideoModelName],
default=VideoModelName.vidu_q1.value,
tooltip="Model name",
),
IO.Image.Input(
"first_frame",
tooltip="Start frame",
@ -406,13 +497,15 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
),
IO.Combo.Input(
"resolution",
options=["1080p"],
options=[model.value for model in Resolution],
default=Resolution.r_1080p.value,
tooltip="Supported values may vary by model & duration",
optional=True,
),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
options=[model.value for model in MovementAmplitude],
default=MovementAmplitude.auto.value,
tooltip="The movement amplitude of objects in the frame",
optional=True,
),
@ -432,8 +525,8 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
async def execute(
cls,
model: str,
first_frame: Input.Image,
end_frame: Input.Image,
first_frame: torch.Tensor,
end_frame: torch.Tensor,
prompt: str,
duration: int,
seed: int,
@ -442,7 +535,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
) -> IO.NodeOutput:
validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
payload = TaskCreationRequest(
model=model,
model_name=model,
prompt=prompt,
duration=duration,
seed=seed,
@ -453,391 +546,8 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
(await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0]
for frame in (first_frame, end_frame)
]
results = await execute_task(cls, VIDU_START_END_VIDEO, payload)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class Vidu2TextToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Vidu2TextToVideoNode",
display_name="Vidu2 Text-to-Video Generation",
category="api node/video/Vidu",
description="Generate video from a text prompt",
inputs=[
IO.Combo.Input("model", options=["viduq2"]),
IO.String.Input(
"prompt",
multiline=True,
tooltip="A textual description for video generation, with a maximum length of 2000 characters.",
),
IO.Int.Input(
"duration",
default=5,
min=1,
max=10,
step=1,
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "3:4", "4:3", "1:1"]),
IO.Combo.Input("resolution", options=["720p", "1080p"]),
IO.Boolean.Input(
"background_music",
default=False,
tooltip="Whether to add background music to the generated video.",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
duration: int,
seed: int,
aspect_ratio: str,
resolution: str,
background_music: bool,
) -> IO.NodeOutput:
validate_string(prompt, min_length=1, max_length=2000)
results = await execute_task(
cls,
VIDU_TEXT_TO_VIDEO,
TaskCreationRequest(
model=model,
prompt=prompt,
duration=duration,
seed=seed,
aspect_ratio=aspect_ratio,
resolution=resolution,
bgm=background_music,
),
)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class Vidu2ImageToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Vidu2ImageToVideoNode",
display_name="Vidu2 Image-to-Video Generation",
category="api node/video/Vidu",
description="Generate a video from an image and an optional prompt.",
inputs=[
IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]),
IO.Image.Input(
"image",
tooltip="An image to be used as the start frame of the generated video.",
),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="An optional text prompt for video generation (max 2000 characters).",
),
IO.Int.Input(
"duration",
default=5,
min=1,
max=10,
step=1,
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Combo.Input(
"resolution",
options=["720p", "1080p"],
),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
tooltip="The movement amplitude of objects in the frame.",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
prompt: str,
duration: int,
seed: int,
resolution: str,
movement_amplitude: str,
) -> IO.NodeOutput:
if get_number_of_images(image) > 1:
raise ValueError("Only one input image is allowed.")
validate_image_aspect_ratio(image, (1, 4), (4, 1))
validate_string(prompt, max_length=2000)
results = await execute_task(
cls,
VIDU_IMAGE_TO_VIDEO,
TaskCreationRequest(
model=model,
prompt=prompt,
duration=duration,
seed=seed,
resolution=resolution,
movement_amplitude=movement_amplitude,
images=await upload_images_to_comfyapi(
cls,
image,
max_images=1,
mime_type="image/png",
),
),
)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class Vidu2ReferenceVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Vidu2ReferenceVideoNode",
display_name="Vidu2 Reference-to-Video Generation",
category="api node/video/Vidu",
description="Generate a video from multiple reference images and a prompt.",
inputs=[
IO.Combo.Input("model", options=["viduq2"]),
IO.Autogrow.Input(
"subjects",
template=IO.Autogrow.TemplateNames(
IO.Image.Input("reference_images"),
names=["subject1", "subject2", "subject3"],
min=1,
),
tooltip="For each subject, provide up to 3 reference images (7 images total across all subjects). "
"Reference them in prompts via @subject{subject_id}.",
),
IO.String.Input(
"prompt",
multiline=True,
tooltip="When enabled, the video will include generated speech and background music "
"based on the prompt.",
),
IO.Boolean.Input(
"audio",
default=False,
tooltip="When enabled video will contain generated speech and background music based on the prompt.",
),
IO.Int.Input(
"duration",
default=5,
min=1,
max=10,
step=1,
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "4:3", "3:4", "1:1"]),
IO.Combo.Input("resolution", options=["720p"]),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
tooltip="The movement amplitude of objects in the frame.",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
subjects: IO.Autogrow.Type,
prompt: str,
audio: bool,
duration: int,
seed: int,
aspect_ratio: str,
resolution: str,
movement_amplitude: str,
) -> IO.NodeOutput:
validate_string(prompt, min_length=1, max_length=2000)
total_images = 0
for i in subjects:
if get_number_of_images(subjects[i]) > 3:
raise ValueError("Maximum number of images per subject is 3.")
for im in subjects[i]:
total_images += 1
validate_image_aspect_ratio(im, (1, 4), (4, 1))
validate_image_dimensions(im, min_width=128, min_height=128)
if total_images > 7:
raise ValueError("Too many reference images; the maximum allowed is 7.")
subjects_param: list[SubjectReference] = []
for i in subjects:
subjects_param.append(
SubjectReference(
id=i,
images=await upload_images_to_comfyapi(
cls,
subjects[i],
max_images=3,
mime_type="image/png",
wait_label=f"Uploading reference images for {i}",
),
),
)
payload = TaskCreationRequest(
model=model,
prompt=prompt,
audio=audio,
duration=duration,
seed=seed,
aspect_ratio=aspect_ratio,
resolution=resolution,
movement_amplitude=movement_amplitude,
subjects=subjects_param,
)
results = await execute_task(cls, VIDU_REFERENCE_VIDEO, payload)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
class Vidu2StartEndToVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="Vidu2StartEndToVideoNode",
display_name="Vidu2 Start/End Frame-to-Video Generation",
category="api node/video/Vidu",
description="Generate a video from a start frame, an end frame, and a prompt.",
inputs=[
IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]),
IO.Image.Input("first_frame"),
IO.Image.Input("end_frame"),
IO.String.Input(
"prompt",
multiline=True,
tooltip="Prompt description (max 2000 characters).",
),
IO.Int.Input(
"duration",
default=5,
min=2,
max=8,
step=1,
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=1,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
),
IO.Combo.Input("resolution", options=["720p", "1080p"]),
IO.Combo.Input(
"movement_amplitude",
options=["auto", "small", "medium", "large"],
tooltip="The movement amplitude of objects in the frame.",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
first_frame: Input.Image,
end_frame: Input.Image,
prompt: str,
duration: int,
seed: int,
resolution: str,
movement_amplitude: str,
) -> IO.NodeOutput:
validate_string(prompt, max_length=2000)
if get_number_of_images(first_frame) > 1:
raise ValueError("Only one input image is allowed for `first_frame`.")
if get_number_of_images(end_frame) > 1:
raise ValueError("Only one input image is allowed for `end_frame`.")
validate_images_aspect_ratio_closeness(first_frame, end_frame, min_rel=0.8, max_rel=1.25, strict=False)
payload = TaskCreationRequest(
model=model,
prompt=prompt,
duration=duration,
seed=seed,
resolution=resolution,
movement_amplitude=movement_amplitude,
images=[
(await upload_images_to_comfyapi(cls, frame, max_images=1, mime_type="image/png"))[0]
for frame in (first_frame, end_frame)
],
)
results = await execute_task(cls, VIDU_START_END_VIDEO, payload)
return IO.NodeOutput(await download_url_to_video_output(results[0].url))
results = await execute_task(cls, VIDU_START_END_VIDEO, payload, 96)
return IO.NodeOutput(await download_url_to_video_output(get_video_from_response(results).url))
class ViduExtension(ComfyExtension):
@ -848,10 +558,6 @@ class ViduExtension(ComfyExtension):
ViduImageToVideoNode,
ViduReferenceVideoNode,
ViduStartEndToVideoNode,
Vidu2TextToVideoNode,
Vidu2ImageToVideoNode,
Vidu2ReferenceVideoNode,
Vidu2StartEndToVideoNode,
]

View File

@ -55,7 +55,7 @@ def image_tensor_pair_to_batch(image1: torch.Tensor, image2: torch.Tensor) -> to
def tensor_to_bytesio(
image: torch.Tensor,
*,
name: str | None = None,
total_pixels: int = 2048 * 2048,
mime_type: str = "image/png",
) -> BytesIO:
@ -75,7 +75,7 @@ def tensor_to_bytesio(
pil_image = tensor_to_pil(image, total_pixels=total_pixels)
img_binary = pil_to_bytesio(pil_image, mime_type=mime_type)
img_binary.name = f"{uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
img_binary.name = f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
return img_binary

View File

@ -49,7 +49,6 @@ async def upload_images_to_comfyapi(
mime_type: str | None = None,
wait_label: str | None = "Uploading",
show_batch_index: bool = True,
total_pixels: int = 2048 * 2048,
) -> list[str]:
"""
Uploads images to ComfyUI API and returns download URLs.
@ -64,7 +63,7 @@ async def upload_images_to_comfyapi(
for idx in range(num_to_upload):
tensor = image[idx] if is_batch else image
img_io = tensor_to_bytesio(tensor, total_pixels=total_pixels, mime_type=mime_type)
img_io = tensor_to_bytesio(tensor, mime_type=mime_type)
effective_label = wait_label
if wait_label and show_batch_index and num_to_upload > 1:
@ -82,6 +81,7 @@ async def upload_audio_to_comfyapi(
container_format: str = "mp4",
codec_name: str = "aac",
mime_type: str = "audio/mp4",
filename: str = "uploaded_audio.mp4",
) -> str:
"""
Uploads a single audio input to ComfyUI API and returns its download URL.
@ -91,7 +91,7 @@ async def upload_audio_to_comfyapi(
waveform: torch.Tensor = audio["waveform"]
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
audio_bytes_io = audio_ndarray_to_bytesio(audio_data_np, sample_rate, container_format, codec_name)
return await upload_file_to_comfyapi(cls, audio_bytes_io, f"{uuid.uuid4()}.{container_format}", mime_type)
return await upload_file_to_comfyapi(cls, audio_bytes_io, filename, mime_type)
async def upload_video_to_comfyapi(

View File

@ -14,9 +14,8 @@ class JobStatus:
IN_PROGRESS = 'in_progress'
COMPLETED = 'completed'
FAILED = 'failed'
CANCELLED = 'cancelled'
ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED, CANCELLED]
ALL = [PENDING, IN_PROGRESS, COMPLETED, FAILED]
# Media types that can be previewed in the frontend
@ -95,6 +94,12 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
status_info = history_item.get('status', {})
status_str = status_info.get('status_str') if status_info else None
if status_str == 'success':
status = JobStatus.COMPLETED
elif status_str == 'error':
status = JobStatus.FAILED
else:
status = JobStatus.COMPLETED
outputs = history_item.get('outputs', {})
outputs_count, preview_output = get_outputs_summary(outputs)
@ -102,7 +107,6 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
execution_error = None
execution_start_time = None
execution_end_time = None
was_interrupted = False
if status_info:
messages = status_info.get('messages', [])
for entry in messages:
@ -115,15 +119,6 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
execution_end_time = event_data.get('timestamp')
if event_name == 'execution_error':
execution_error = event_data
elif event_name == 'execution_interrupted':
was_interrupted = True
if status_str == 'success':
status = JobStatus.COMPLETED
elif status_str == 'error':
status = JobStatus.CANCELLED if was_interrupted else JobStatus.FAILED
else:
status = JobStatus.COMPLETED
job = prune_dict({
'id': prompt_id,
@ -273,13 +268,13 @@ def get_all_jobs(
for item in queued:
jobs.append(normalize_queue_item(item, JobStatus.PENDING))
history_statuses = {JobStatus.COMPLETED, JobStatus.FAILED, JobStatus.CANCELLED}
requested_history_statuses = history_statuses & set(status_filter)
if requested_history_statuses:
include_completed = JobStatus.COMPLETED in status_filter
include_failed = JobStatus.FAILED in status_filter
if include_completed or include_failed:
for prompt_id, history_item in history.items():
job = normalize_history_item(prompt_id, history_item)
if job.get('status') in requested_history_statuses:
jobs.append(job)
is_failed = history_item.get('status', {}).get('status_str') == 'error'
if (is_failed and include_failed) or (not is_failed and include_completed):
jobs.append(normalize_history_item(prompt_id, history_item))
if workflow_id:
jobs = [j for j in jobs if j.get('workflow_id') == workflow_id]

View File

@ -399,58 +399,6 @@ class SplitAudioChannels(IO.ComfyNode):
separate = execute # TODO: remove
class JoinAudioChannels(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="JoinAudioChannels",
display_name="Join Audio Channels",
description="Joins left and right mono audio channels into a stereo audio.",
category="audio",
inputs=[
IO.Audio.Input("audio_left"),
IO.Audio.Input("audio_right"),
],
outputs=[
IO.Audio.Output(display_name="audio"),
],
)
@classmethod
def execute(cls, audio_left, audio_right) -> IO.NodeOutput:
waveform_left = audio_left["waveform"]
sample_rate_left = audio_left["sample_rate"]
waveform_right = audio_right["waveform"]
sample_rate_right = audio_right["sample_rate"]
if waveform_left.shape[1] != 1 or waveform_right.shape[1] != 1:
raise ValueError("AudioJoin: Both input audios must be mono.")
# Handle different sample rates by resampling to the higher rate
waveform_left, waveform_right, output_sample_rate = match_audio_sample_rates(
waveform_left, sample_rate_left, waveform_right, sample_rate_right
)
# Handle different lengths by trimming to the shorter length
length_left = waveform_left.shape[-1]
length_right = waveform_right.shape[-1]
if length_left != length_right:
min_length = min(length_left, length_right)
if length_left > min_length:
logging.info(f"JoinAudioChannels: Trimming left channel from {length_left} to {min_length} samples.")
waveform_left = waveform_left[..., :min_length]
if length_right > min_length:
logging.info(f"JoinAudioChannels: Trimming right channel from {length_right} to {min_length} samples.")
waveform_right = waveform_right[..., :min_length]
# Join the channels into stereo
left_channel = waveform_left[..., 0:1, :]
right_channel = waveform_right[..., 0:1, :]
stereo_waveform = torch.cat([left_channel, right_channel], dim=1)
return IO.NodeOutput({"waveform": stereo_waveform, "sample_rate": output_sample_rate})
def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2):
if sample_rate_1 != sample_rate_2:
@ -668,7 +616,6 @@ class AudioExtension(ComfyExtension):
RecordAudio,
TrimAudioDuration,
SplitAudioChannels,
JoinAudioChannels,
AudioConcat,
AudioMerge,
AudioAdjustVolume,

View File

@ -1,53 +0,0 @@
import nodes
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension
class ImageCompare(IO.ComfyNode):
"""Compares two images with a slider interface."""
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ImageCompare",
display_name="Image Compare",
description="Compares two images side by side with a slider.",
category="image",
is_experimental=True,
is_output_node=True,
inputs=[
IO.Image.Input("image_a", optional=True),
IO.Image.Input("image_b", optional=True),
IO.ImageCompare.Input("compare_view"),
],
outputs=[],
)
@classmethod
def execute(cls, image_a=None, image_b=None, compare_view=None) -> IO.NodeOutput:
result = {"a_images": [], "b_images": []}
preview_node = nodes.PreviewImage()
if image_a is not None and len(image_a) > 0:
saved = preview_node.save_images(image_a, "comfy.compare.a")
result["a_images"] = saved["ui"]["images"]
if image_b is not None and len(image_b) > 0:
saved = preview_node.save_images(image_b, "comfy.compare.b")
result["b_images"] = saved["ui"]["images"]
return IO.NodeOutput(ui=result)
class ImageCompareExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
ImageCompare,
]
async def comfy_entrypoint() -> ImageCompareExtension:
return ImageCompareExtension()

View File

@ -185,10 +185,6 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
io.Combo.Input(
"ckpt_name",
options=folder_paths.get_filename_list("checkpoints"),
),
io.Combo.Input(
"device",
options=["default", "cpu"],
)
],
outputs=[io.Clip.Output()],
@ -201,11 +197,7 @@ class LTXAVTextEncoderLoader(io.ComfyNode):
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder)
clip_path2 = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
model_options = {}
if device == "cpu":
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return io.NodeOutput(clip)

View File

@ -1,3 +1,3 @@
# This file is automatically generated by the build process when version is
# updated in pyproject.toml.
__version__ = "0.8.2"
__version__ = "0.7.0"

View File

@ -7,7 +7,6 @@ import folder_paths
import time
from comfy.cli_args import args
from app.logger import setup_logger
from app.assets.scanner import seed_assets
import itertools
import utils.extra_config
import logging
@ -325,8 +324,6 @@ def setup_database():
from app.database.db import init_db, dependencies_available
if dependencies_available():
init_db()
if not args.disable_assets_autoscan:
seed_assets(["models"], enable_logging=True)
except Exception as e:
logging.error(f"Failed to initialize database. Please ensure you have installed the latest requirements. If the error persists, please report this as in future the database will be required: {e}")

View File

@ -1 +1 @@
comfyui_manager==4.0.5
comfyui_manager==4.0.4

View File

@ -378,15 +378,14 @@ class VAEEncodeForInpaint:
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask, grow_mask_by=6):
downscale_ratio = vae.spacial_compression_encode()
x = (pixels.shape[1] // downscale_ratio) * downscale_ratio
y = (pixels.shape[2] // downscale_ratio) * downscale_ratio
x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % downscale_ratio) // 2
y_offset = (pixels.shape[2] % downscale_ratio) // 2
x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
@ -2370,7 +2369,6 @@ async def init_builtin_extra_nodes():
"nodes_nop.py",
"nodes_kandinsky5.py",
"nodes_wanmove.py",
"nodes_image_compare.py",
]
import_failed = []

View File

@ -1,6 +1,6 @@
[project]
name = "ComfyUI"
version = "0.8.2"
version = "0.7.0"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.10"

View File

@ -1,6 +1,6 @@
comfyui-frontend-package==1.36.13
comfyui-workflow-templates==0.7.69
comfyui-embedded-docs==0.4.0
comfyui-frontend-package==1.35.9
comfyui-workflow-templates==0.7.67
comfyui-embedded-docs==0.3.1
torch
torchsde
torchvision
@ -21,7 +21,7 @@ psutil
alembic
SQLAlchemy
av>=14.2.0
comfy-kitchen>=0.2.5
comfy-kitchen>=0.2.3
#non essential dependencies:
kornia>=0.7.1

View File

@ -33,8 +33,6 @@ import node_helpers
from comfyui_version import __version__
from app.frontend_management import FrontendManager, parse_version
from comfy_api.internal import _ComfyNodeInternal
from app.assets.scanner import seed_assets
from app.assets.api.routes import register_assets_system
from app.user_manager import UserManager
from app.model_manager import ModelFileManager
@ -186,7 +184,7 @@ def create_block_external_middleware():
else:
response = await handler(request)
response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self' data:; frame-src 'self'; object-src 'self';"
response.headers['Content-Security-Policy'] = "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' blob:; style-src 'self' 'unsafe-inline'; img-src 'self' data: blob:; font-src 'self'; connect-src 'self'; frame-src 'self'; object-src 'self';"
return response
return block_external_middleware
@ -237,7 +235,6 @@ class PromptServer():
else args.front_end_root
)
logging.info(f"[Prompt Server] web root: {self.web_root}")
register_assets_system(self.app, self.user_manager)
routes = web.RouteTableDef()
self.routes = routes
self.last_node_id = None
@ -686,7 +683,6 @@ class PromptServer():
@routes.get("/object_info")
async def get_object_info(request):
seed_assets(["models"])
with folder_paths.cache_helper:
out = {}
for x in nodes.NODE_CLASS_MAPPINGS:

View File

@ -153,9 +153,9 @@ class TestMixedPrecisionOps(unittest.TestCase):
state_dict2 = model.state_dict()
# Verify layer1.weight is a QuantizedTensor with scale preserved
self.assertTrue(torch.equal(state_dict2["layer1.weight"].view(torch.uint8), fp8_weight.view(torch.uint8)))
self.assertEqual(state_dict2["layer1.weight_scale"].item(), 3.0)
self.assertEqual(model.layer1.weight._layout_cls, "TensorCoreFP8E4M3Layout")
self.assertIsInstance(state_dict2["layer1.weight"], QuantizedTensor)
self.assertEqual(state_dict2["layer1.weight"]._params.scale.item(), 3.0)
self.assertEqual(state_dict2["layer1.weight"]._layout_cls, "TensorCoreFP8E4M3Layout")
# Verify non-quantized layers are standard tensors
self.assertNotIsInstance(state_dict2["layer2.weight"], QuantizedTensor)

View File

@ -19,7 +19,6 @@ class TestJobStatus:
assert JobStatus.IN_PROGRESS == 'in_progress'
assert JobStatus.COMPLETED == 'completed'
assert JobStatus.FAILED == 'failed'
assert JobStatus.CANCELLED == 'cancelled'
def test_all_contains_all_statuses(self):
"""ALL should contain all status values."""
@ -27,8 +26,7 @@ class TestJobStatus:
assert JobStatus.IN_PROGRESS in JobStatus.ALL
assert JobStatus.COMPLETED in JobStatus.ALL
assert JobStatus.FAILED in JobStatus.ALL
assert JobStatus.CANCELLED in JobStatus.ALL
assert len(JobStatus.ALL) == 5
assert len(JobStatus.ALL) == 4
class TestIsPreviewable:
@ -338,40 +336,6 @@ class TestNormalizeHistoryItem:
assert job['execution_error']['node_type'] == 'KSampler'
assert job['execution_error']['exception_message'] == 'CUDA out of memory'
def test_cancelled_job(self):
"""Cancelled/interrupted history item should have cancelled status."""
history_item = {
'prompt': (
5,
'prompt-cancelled',
{'nodes': {}},
{'create_time': 1234567890000},
['node1'],
),
'status': {
'status_str': 'error',
'completed': False,
'messages': [
('execution_start', {'prompt_id': 'prompt-cancelled', 'timestamp': 1234567890500}),
('execution_interrupted', {
'prompt_id': 'prompt-cancelled',
'node_id': '5',
'node_type': 'KSampler',
'executed': ['1', '2', '3'],
'timestamp': 1234567891000,
})
]
},
'outputs': {},
}
job = normalize_history_item('prompt-cancelled', history_item)
assert job['status'] == 'cancelled'
assert job['execution_start_time'] == 1234567890500
assert job['execution_end_time'] == 1234567891000
# Cancelled jobs should not have execution_error set
assert 'execution_error' not in job
def test_include_outputs(self):
"""When include_outputs=True, should include full output data."""
history_item = {