MNN/source/math/Matrix.cpp

424 lines
13 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// Matrix.cpp
// MNN
//
// Created by MNN on 2018/08/20.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "math/Matrix.hpp"
#include "core/MNNMemoryUtils.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include <cmath>
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
namespace MNN {
namespace Math {
Tensor* Matrix::createShape(int w, int h, void* data) {
auto shape = new Tensor(2);
shape->buffer().dim[0].extent = h;
shape->buffer().dim[1].extent = w;
TensorUtils::setLinearLayout(shape);
shape->buffer().host = (uint8_t*)data;
return shape;
}
Tensor* Matrix::create(int w, int h) {
Tensor shape(2);
shape.buffer().dim[0].extent = h;
shape.buffer().dim[1].extent = w;
auto result = new Tensor(&shape);
TensorUtils::setLinearLayout(result);
return result;
}
void Matrix::multi(Tensor* C, const Tensor* A, const Tensor* B) {
MNN_ASSERT(NULL != C);
MNN_ASSERT(NULL != B);
MNN_ASSERT(NULL != A);
MNN_ASSERT(2 == C->dimensions());
MNN_ASSERT(2 == B->dimensions());
MNN_ASSERT(2 == A->dimensions());
const auto a = A->host<float>();
const auto b = B->host<float>();
auto c = C->host<float>();
const int h = A->length(0);
const int k = A->length(1);
const int w = B->length(1);
const int aw = A->stride(0);
const int bw = B->stride(0);
const int cw = C->stride(0);
MNN_ASSERT(k == B->length(0));
int y = 0;
for (; y < h; ++y) {
int x = 0;
const auto aLine = a + y * aw;
auto cLine = c + y * cw;
#ifdef MNN_USE_NEON
// firstly, compute 16 together
for (; x <= w - 16; x += 16) {
auto bColumn = b + x;
float32x4_t sum0 = vdupq_n_f32(0.0);
float32x4_t sum1 = vdupq_n_f32(0.0);
float32x4_t sum2 = vdupq_n_f32(0.0);
float32x4_t sum3 = vdupq_n_f32(0.0);
for (int i = 0; i < k; ++i) {
const auto bLine = bColumn + i * bw;
float32x4_t a0 = vdupq_n_f32(aLine[i]);
float32x4_t b0 = vld1q_f32(bLine);
float32x4_t b1 = vld1q_f32(bLine + 4);
float32x4_t b2 = vld1q_f32(bLine + 8);
float32x4_t b3 = vld1q_f32(bLine + 12);
sum0 = vmlaq_f32(sum0, a0, b0);
sum1 = vmlaq_f32(sum1, a0, b1);
sum2 = vmlaq_f32(sum2, a0, b2);
sum3 = vmlaq_f32(sum3, a0, b3);
}
vst1q_f32(cLine + x, sum0);
vst1q_f32(cLine + x + 4, sum1);
vst1q_f32(cLine + x + 8, sum2);
vst1q_f32(cLine + x + 12, sum3);
}
// secondly, compute 4 together
for (; x <= w - 4; x += 4) {
auto bColumn = b + x;
float32x4_t sum = vdupq_n_f32(0.0);
for (int i = 0; i < k; ++i) {
const auto bLine = bColumn + i * bw;
float32x4_t a4 = vdupq_n_f32(aLine[i]);
float32x4_t b4 = vld1q_f32(bLine);
sum = vmlaq_f32(sum, a4, b4);
}
vst1q_f32(cLine + x, sum);
}
#endif
for (; x < w; ++x) {
auto bColumn = b + x;
float sum = 0.0f;
for (int i = 0; i < k; ++i) {
sum += aLine[i] * bColumn[i * bw];
}
cLine[x] = sum;
}
}
}
void Matrix::add(Tensor* C, const Tensor* A, const Tensor* B) {
MNN_ASSERT(NULL != C);
MNN_ASSERT(NULL != B);
MNN_ASSERT(NULL != A);
MNN_ASSERT(A->size() == C->size());
auto height = A->length(0);
auto width = A->length(1);
int bOffset = 0;
if (B->dimensions() == A->dimensions()) {
bOffset = B->stride(0);
MNN_ASSERT(B->length(1) == A->length(1));
MNN_ASSERT(B->length(0) == A->length(0));
} else {
bOffset = 0;
MNN_ASSERT(B->length(0) == A->length(1));
2019-04-17 10:49:11 +08:00
}
const int size = width;
for (int y=0; y<height; ++y) {
auto a = A->host<float>() + y * A->stride(0);
auto b = B->host<float>() + y * bOffset;
auto c = C->host<float>() + y * C->stride(0);
int i = 0;
#ifdef MNN_USE_NEON
for (; i <= size - 16; i += 16) {
float32x4_t a0 = vld1q_f32(a + i);
float32x4_t a1 = vld1q_f32(a + i + 4);
float32x4_t a2 = vld1q_f32(a + i + 8);
float32x4_t a3 = vld1q_f32(a + i + 12);
float32x4_t b0 = vld1q_f32(b + i);
float32x4_t b1 = vld1q_f32(b + i + 4);
float32x4_t b2 = vld1q_f32(b + i + 8);
float32x4_t b3 = vld1q_f32(b + i + 12);
2019-12-27 22:16:57 +08:00
float32x4_t sum0 = vaddq_f32(a0, b0);
float32x4_t sum1 = vaddq_f32(a1, b1);
float32x4_t sum2 = vaddq_f32(a2, b2);
float32x4_t sum3 = vaddq_f32(a3, b3);
2019-12-27 22:16:57 +08:00
vst1q_f32(c + i, sum0);
vst1q_f32(c + i + 4, sum1);
vst1q_f32(c + i + 8, sum2);
vst1q_f32(c + i + 12, sum3);
}
2019-12-27 22:16:57 +08:00
for (; i <= size - 4; i += 4) {
float32x4_t aa = vld1q_f32(a + i);
float32x4_t bb = vld1q_f32(b + i);
float32x4_t sum = vaddq_f32(aa, bb);
vst1q_f32(c + i, sum);
}
2019-04-17 10:49:11 +08:00
#endif
for (; i < size; ++i) {
c[i] = a[i] + b[i];
}
2019-04-17 10:49:11 +08:00
}
}
2020-05-31 00:36:18 +08:00
void Matrix::dot(Tensor* C, const Tensor* A, const Tensor* B) {
MNN_ASSERT(NULL != C);
MNN_ASSERT(NULL != B);
MNN_ASSERT(NULL != A);
MNN_ASSERT(2 == C->dimensions());
MNN_ASSERT(2 == B->dimensions());
MNN_ASSERT(2 == A->dimensions());
MNN_ASSERT(A->shape() == B->shape());
MNN_ASSERT(A->shape() == C->shape());
const int height = A->length(0);
const int width = A->length(1);
const int aw = A->stride(0);
const int bw = B->stride(0);
const int cw = C->stride(0);
for(int y = 0; y < height; y++) {
auto a = A->host<float>() + y * aw;
auto b = B->host<float>() + y * bw;
auto c = C->host<float>() + y * cw;
int i = 0;
#ifdef MNN_USE_NEON
for (; i <= width - 16; i += 16) {
float32x4_t a0 = vld1q_f32(a + i);
float32x4_t a1 = vld1q_f32(a + i + 4);
float32x4_t a2 = vld1q_f32(a + i + 8);
float32x4_t a3 = vld1q_f32(a + i + 12);
float32x4_t b0 = vld1q_f32(b + i);
float32x4_t b1 = vld1q_f32(b + i + 4);
float32x4_t b2 = vld1q_f32(b + i + 8);
float32x4_t b3 = vld1q_f32(b + i + 12);
float32x4_t c0 = vmul_f32(a0, b0);
float32x4_t c1 = vmul_f32(a1, b1);
float32x4_t c2 = vmul_f32(a2, b2);
float32x4_t c3 = vmul_f32(a3, b3);
vst1q_f32(c + i, c0);
vst1q_f32(c + i + 4, c1);
vst1q_f32(c + i + 8, c2);
vst1q_f32(c + i + 12, c3);
}
for (; i <= width - 4; i += 4) {
float32x4_t aa = vld1q_f32(a + i);
float32x4_t bb = vld1q_f32(b + i);
float32x4_t cc = vmul_f32(aa, bb);
vst1q_f32(c + i, cc);
}
#endif
for (; i < width; ++i) {
c[i] = a[i] * b[i];
}
}
}
2019-04-17 10:49:11 +08:00
void Matrix::invert(Tensor* dst, const Tensor* src) {
MNN_ASSERT(2 == src->buffer().dimensions);
const int N0 = src->buffer().dim[0].extent;
const int N1 = src->buffer().dim[1].extent;
MNN_ASSERT(N0 == N1);
int i, j, k;
float max, temp;
std::shared_ptr<Tensor> tempMat(Matrix::create(N0, N0));
::memcpy(tempMat->buffer().host, src->buffer().host, src->size());
const auto tempData = tempMat->host<float>();
const auto dstData = dst->host<float>();
for (i = 0; i < N0; ++i) {
for (j = 0; j < N0; ++j) {
*(dstData + i * N0 + j) = (i == j) ? 1.0f : 0.0f;
}
}
for (i = 0; i < N0; ++i) {
max = *(tempData + i * N0 + i);
k = i;
for (j = i + 1; j < N0; ++j) {
auto data1 = *(tempData + j * N0 + i);
if (fabs(data1) > fabs(max)) {
max = data1;
k = j;
}
}
if (k != i) {
for (j = 0; j < N0; ++j) {
temp = *(tempData + i * N0 + j);
*(tempData + i * N0 + j) = *(tempData + k * N0 + j);
*(tempData + k * N0 + j) = temp;
temp = *(dstData + i * N0 + j);
*(dstData + i * N0 + j) = *(dstData + k * N0 + j);
*(dstData + k * N0 + j) = temp;
}
}
if (*(tempData + i * N0 + i) == 0) {
MNN_PRINT("This matrix have no inverse!\n");
return;
}
temp = *(tempData + i * N0 + i);
for (j = 0; j < N0; ++j) {
*(tempData + i * N0 + j) = *(tempData + i * N0 + j) / temp;
*(dstData + i * N0 + j) = *(dstData + i * N0 + j) / temp;
}
for (j = 0; j < N0; ++j) {
if (j != i) {
temp = *(tempData + j * N0 + i);
for (k = 0; k < N0; ++k) {
*(tempData + j * N0 + k) = *(tempData + j * N0 + k) - *(tempData + i * N0 + k) * temp;
*(dstData + j * N0 + k) = *(dstData + j * N0 + k) - *(dstData + i * N0 + k) * temp;
}
}
}
}
}
void Matrix::transpose(Tensor* dst, const Tensor* src) {
auto a = src->host<float>();
auto b = dst->host<float>();
int as = src->buffer().dim[0].stride;
int bs = dst->buffer().dim[0].stride;
int w = dst->buffer().dim[1].extent;
int h = dst->buffer().dim[0].extent;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
b[bs * y + x] = a[as * x + y];
}
}
}
void Matrix::print(const Tensor* C, const char* head) {
auto c = C->host<float>();
auto w = C->buffer().dim[1].extent;
auto h = C->buffer().dim[0].extent;
auto stride = C->buffer().dim[0].stride;
MNN_PRINT("%s\n", head);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
MNN_PRINT("%.7f\t", c[x + y * stride]);
}
MNN_PRINT("\n");
}
}
void Matrix::mulPerLine(Tensor* C, const Tensor* A, const Tensor* Line) {
auto c = C->host<float>();
auto a = A->host<float>();
auto l = Line->host<float>();
auto w = C->buffer().dim[1].extent;
auto h = C->buffer().dim[0].extent;
auto stride = C->buffer().dim[0].stride;
auto srcStride = A->buffer().dim[0].stride;
MNN_ASSERT(Line->buffer().dim[1].extent >= h);
MNN_ASSERT(A->buffer().dim[0].extent == h);
MNN_ASSERT(A->buffer().dim[1].extent == w);
MNN_ASSERT(Line->buffer().dim[0].extent == 1);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
c[x + y * stride] = a[x + y * srcStride] * l[y];
}
}
}
void Matrix::divPerLine(Tensor* C, const Tensor* A, const Tensor* Line) {
auto c = C->host<float>();
auto a = A->host<float>();
auto l = Line->host<float>();
auto w = C->buffer().dim[1].extent;
auto h = C->buffer().dim[0].extent;
auto stride = C->buffer().dim[0].stride;
auto srcStride = A->buffer().dim[0].stride;
MNN_ASSERT(Line->buffer().dim[1].extent >= h);
MNN_ASSERT(A->buffer().dim[0].extent == h);
MNN_ASSERT(A->buffer().dim[1].extent == w);
MNN_ASSERT(Line->buffer().dim[0].extent == 1);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
c[x + y * stride] = a[x + y * srcStride] / l[y];
}
}
}
std::shared_ptr<Tensor> Matrix::polyMulti(std::shared_ptr<Tensor> A, std::shared_ptr<Tensor> B) {
MNN_ASSERT(A->buffer().dim[0].extent == 1);
MNN_ASSERT(B->buffer().dim[0].extent == 1);
auto aw = A->buffer().dim[1].extent;
auto bw = B->buffer().dim[1].extent;
std::shared_ptr<Tensor> result(Matrix::create(aw + bw - 1, 1));
auto a = A->host<float>();
auto b = B->host<float>();
auto c = result->host<float>();
for (int i = 0; i < aw + bw - 1; ++i) {
c[i] = 0.0f;
}
for (int y = 0; y < bw; ++y) {
auto bValue = b[y];
for (int x = 0; x < aw; ++x) {
auto aValue = a[x];
c[x + y] += bValue * aValue;
}
}
return result;
}
float Matrix::matDet(const Tensor* A) {
MNN_ASSERT(2 == A->buffer().dimensions);
const int n0 = A->buffer().dim[0].extent;
const int n1 = A->buffer().dim[1].extent;
MNN_ASSERT(n0 == n1);
auto dataPtr = A->host<float>();
int r, c, m;
int lop = 0;
float result = 0;
float mid = 1;
if (n0 != 1) {
if (2 == n0) {
lop = 1;
} else {
lop = n0;
}
for (m = 0; m < lop; ++m) {
mid = 1;
for (r = 0, c = m; r < n0; ++r, ++c) {
mid = mid * (*(dataPtr + r * n0 + c % n0));
}
result += mid;
}
for (m = 0; m < lop; ++m) {
mid = 1;
for (r = 0, c = n0 - 1 - m + n0; r < n0; ++r, --c) {
mid = mid * (*(dataPtr + r * n0 + c % n0));
}
result -= mid;
}
}
return result;
}
} // namespace Math
} // namespace MNN