MNN/source/shape/ShapeTranspose.cpp

58 lines
1.9 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeTranspose.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Macro.h"
#include "SizeComputer.hpp"
#include "TensorUtils.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
class TransposeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto OpParam = op->main_as_Transpose();
const Tensor* input = inputs[0];
Tensor* perm = inputs[1];
std::shared_ptr<Tensor> perTemp;
// copy data from device to host if needed
if (!perm->host<int32_t>() && perm->deviceId()) {
perTemp.reset(Tensor::createHostTensorFromDevice(perm, true));
perm = perTemp.get();
}
const int dims = input->buffer().dimensions;
MNN_ASSERT(dims == perm->buffer().dim[0].extent);
std::vector<int32_t> permutation;
if (OpParam->Tperm() == DataType_DT_INT32) {
for (int i = 0; i < perm->buffer().dim[0].extent; i++) {
permutation.push_back(perm->host<int32_t>()[i]);
}
} else if (OpParam->Tperm() == DataType_DT_INT64) {
for (int i = 0; i < perm->buffer().dim[0].extent; i++) {
permutation.push_back(static_cast<int32_t>(perm->host<int64_t>()[i]));
}
} else {
MNN_ASSERT(false);
}
outputs[0]->buffer().dimensions = dims;
for (int i = 0; i < dims; ++i) {
const int32_t d = permutation[i];
outputs[0]->buffer().dim[i].extent = input->buffer().dim[d].extent;
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(TransposeComputer, OpType_Transpose);
} // namespace MNN