MNN/source/backend/cpu/CPUPermute.cpp

114 lines
3.9 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUPermute.cpp
// MNN
//
// Created by MNN on 2018/07/18.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUPermute.hpp"
#include "CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
#include "TensorUtils.hpp"
namespace MNN {
CPUPermute::CPUPermute(Backend *b, const MNN::Op *op) : MNN::Execution(b) {
auto shape = op->main_as_Permute()->dims();
for (int i = 0; i < shape->size(); ++i) {
mDims.push_back(shape->data()[i]);
}
}
ErrorCode CPUPermute::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
TensorUtils::copyShape(inputs[0], &mStorage);
mStorage.buffer().dim[1].flags = 0;
mStorage.buffer().dim[0].extent = 1;
TensorUtils::setLinearLayout(&mStorage);
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUPermute::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto &input = inputs[0]->buffer();
auto &output = outputs[0]->buffer();
// Currently don't support batch reshape, but support multi batch
MNN_ASSERT(output.dim[0].extent == input.dim[0].extent);
MNN_ASSERT(output.dimensions == input.dimensions);
MNN_ASSERT(output.dimensions == 4);
int areaInput = 1;
int areaOutput = 1;
for (int i = 2; i < input.dimensions; ++i) {
areaInput *= input.dim[i].extent;
areaOutput *= output.dim[i].extent;
}
int inputBatchSize = ALIGN_UP4(input.dim[1].extent) * areaInput;
int outputBatchSize = ALIGN_UP4(output.dim[1].extent) * areaOutput;
auto originInput = (const float *)input.host;
auto originOutput = (float *)output.host;
auto storgeData = mStorage.host<float>();
for (int b = 0; b < input.dim[0].extent; ++b) {
auto inputCurrent = originInput + inputBatchSize * b;
auto outputCurrent = originOutput + outputBatchSize * b;
if (1 == areaInput) {
::memcpy(outputCurrent, inputCurrent, input.dim[1].extent * sizeof(float));
} else {
MNNUnpackC4(outputCurrent, inputCurrent, areaInput, input.dim[1].extent);
}
int dimIndexes[4];
const int width = input.dim[3].extent;
const int height = input.dim[2].extent;
const int inputRealArea = width * height;
const int outputWidth = output.dim[3].extent;
const int outputHeight = output.dim[2].extent;
const int outputChannel = output.dim[1].extent;
const int outputRealArea = outputWidth * outputHeight;
for (int iz = 0; iz < outputChannel; ++iz) {
dimIndexes[mDims[1]] = iz;
for (int iy = 0; iy < outputHeight; ++iy) {
dimIndexes[mDims[2]] = iy;
for (int ix = 0; ix < outputWidth; ++ix) {
dimIndexes[mDims[3]] = ix;
int inputIndex = dimIndexes[1] * inputRealArea + dimIndexes[2] * width + dimIndexes[3];
int outputIndex = iz * outputRealArea + iy * outputWidth + ix;
storgeData[outputIndex] = outputCurrent[inputIndex];
}
}
}
if (1 == areaOutput) {
::memcpy(outputCurrent, storgeData, output.dim[1].extent * sizeof(float));
} else {
MNNPackC4(outputCurrent, storgeData, areaOutput, output.dim[1].extent);
}
}
return NO_ERROR;
}
class CPUPermuteCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUPermute(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUPermuteCreator, OpType_Permute);
} // namespace MNN