MNN/source/backend/opencl/execution/image/MatmulExecution.cpp

134 lines
5.1 KiB
C++
Raw Normal View History

2019-12-27 22:16:57 +08:00
//
// MatmulExecution.cpp
2019-12-27 22:16:57 +08:00
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/MatmulExecution.hpp"
2019-12-27 22:16:57 +08:00
namespace MNN {
namespace OpenCL {
MatMulExecution::MatMulExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend,
bool transposeA, bool transposeB) : Execution(backend)
, mTransposeA(transposeA), mTransposeB(transposeB){
2019-12-27 22:16:57 +08:00
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mAreadySetArg = false;
}
ErrorCode MatMulExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto runtime = mOpenCLBackend->getOpenCLRuntime();
Tensor *input0 = inputs[0];
Tensor *input1 = inputs[1];
Tensor *output = outputs[0];
std::vector<int> input0Shape = tensorShapeFormat(input0);
std::vector<int> input1Shape = tensorShapeFormat(input1);
std::vector<int> outputShape = tensorShapeFormat(output);
2020-11-05 16:41:56 +08:00
if (mKernel.get() == nullptr) {
std::string kernelName;
std::set<std::string> buildOptions;
if(mTransposeA) {
kernelName = mTransposeB ? "matmul_transA_transB":"matmul_transA";
} else {
kernelName = mTransposeB ? "matmul_transB":"matmul";
}
if(inputs.size() > 2) {
buildOptions.emplace("-DBIAS");
}
mKernel = runtime->buildKernel("matmul", kernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
2019-12-27 22:16:57 +08:00
//处理二维矩阵相乘N C相当于H W
//二维矩阵相乘
2020-11-05 16:41:56 +08:00
if(mTransposeA) {
const int height = input0Shape.at(3);
const int outputChannel = input0Shape.at(0);
const int width = mTransposeB ? input1Shape.at(0): input1Shape.at(3);
const int outputChannelBlocks = UP_DIV(outputChannel, 4);
const int widthblocks = UP_DIV(width, 4);
const int heightblocks = UP_DIV(height, 4);
mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(heightblocks)};
int idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, openCLImage(input0));
mKernel.setArg(idx++, openCLImage(input1));
if(inputs.size() > 2) {
mKernel.setArg(idx++, openCLImage(inputs[2]));
}
mKernel.setArg(idx++, openCLImage(output));
mKernel.setArg(idx++, static_cast<int>(outputChannel));
mKernel.setArg(idx++, static_cast<int>(outputChannelBlocks));
mKernel.setArg(idx++, static_cast<int>(height));
mLocalWorkSize = {mMaxWorkGroupSize / 64, 64, 0};
}
else {
const int height = input0Shape.at(0);
const int outputChannel = input0Shape.at(3);
const int width = mTransposeB ? input1Shape.at(0): input1Shape.at(3);
const int outputChannelBlocks = UP_DIV(outputChannel, 4);
const int widthblocks = UP_DIV(width, 4);
mGlobalWorkSize = {static_cast<uint32_t>(widthblocks), static_cast<uint32_t>(height)};
int idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, openCLImage(input0));
mKernel.setArg(idx++, openCLImage(input1));
if(inputs.size() > 2) {
mKernel.setArg(idx++, openCLImage(inputs[2]));
}
mKernel.setArg(idx++, openCLImage(output));
mKernel.setArg(idx++, static_cast<int>(outputChannel));
mKernel.setArg(idx++, static_cast<int>(outputChannelBlocks));
mLocalWorkSize = {mMaxWorkGroupSize / 64, 64, 0};
}
2019-12-27 22:16:57 +08:00
return NO_ERROR;
}
ErrorCode MatMulExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("Start MatMulExecution onExecute... \n");
#endif
auto runtime = mOpenCLBackend->getOpenCLRuntime();
2020-11-05 16:41:56 +08:00
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime, &event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us Matmul\n",costTime);
#else
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize, runtime, nullptr);
#endif
2019-12-27 22:16:57 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("End MatMulExecution onExecute... \n");
#endif
return NO_ERROR;
}
class MatMulCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto param = op->main_as_MatMul();
return new MatMulExecution(inputs, op, backend, param->transposeA(), param->transposeB());
}
};
OpenCLCreatorRegister<MatMulCreator> __matmul_op(OpType_MatMul, IMAGE);
2019-12-27 22:16:57 +08:00
} // namespace OpenCL
} // namespace MNN