MNN/source/backend/cpu/CPUEltwise.cpp

110 lines
3.5 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUEltwise.cpp
// MNN
//
// Created by MNN on 2018/07/19.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUEltwise.hpp"
2019-04-17 10:49:11 +08:00
#include <math.h>
#include <string.h>
2019-12-27 22:16:57 +08:00
#include "core/Concurrency.h"
2019-04-17 10:49:11 +08:00
#include <algorithm>
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUBackend.hpp"
#include "backend/cpu/compute/CommonOptFunction.h"
2019-04-17 10:49:11 +08:00
namespace MNN {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
CPUEltwise::CPUEltwise(Backend *b, EltwiseType type, std::vector<float> coef) : Execution(b) {
mType = type;
mCoeff = coef;
}
2019-04-17 10:49:11 +08:00
ErrorCode CPUEltwise::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto inputTensor = inputs[0];
const int size = static_cast<CPUBackend*>(backend())->getTensorSize(inputTensor);
auto core = static_cast<CPUBackend*>(backend())->functions();
2019-04-17 10:49:11 +08:00
auto outputTensor = outputs[0];
auto outputHost = outputTensor->host<uint8_t>();
const auto input0Ptr = inputs[0]->host<uint8_t>();
const auto input1Ptr = inputs[1]->host<uint8_t>();
auto coeffSize = mCoeff.size();
bool isIdentity = coeffSize >= 2;
if (isIdentity) {
// when Eltwise has coeff
if (mCoeff[0] == 1.0f && mCoeff[1] == 0.0f) {
memcpy(outputHost, input0Ptr, size * core->bytes);
return NO_ERROR;
} else {
return NOT_SUPPORT;
}
}
int opType = -1;
2019-04-17 10:49:11 +08:00
switch (mType) {
case EltwiseType_PROD:
opType = BinaryOpOperation_MUL;
2019-04-17 10:49:11 +08:00
break;
case EltwiseType_SUM:
opType = BinaryOpOperation_ADD;
2019-04-17 10:49:11 +08:00
break;
case EltwiseType_MAXIMUM:
opType = BinaryOpOperation_MAXIMUM;
2019-04-17 10:49:11 +08:00
break;
case EltwiseType_SUB:
opType = BinaryOpOperation_SUB;
break;
2019-04-17 10:49:11 +08:00
default:
MNN_ERROR("Don't support %d type for eltwise", mType);
return INPUT_DATA_ERROR;
}
auto proc = core->MNNSelectBinaryFunctionForFloat(opType);
2020-02-26 09:57:17 +08:00
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
int sizeDivide = schedule.first;
int scheduleNumber = schedule.second;
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
int start = sizeDivide * (int)tId;
int realSize = sizeDivide;
if (tId == scheduleNumber -1 ) {
realSize = size - start;
}
if (realSize > 0) {
auto inputT1 = inputs[1];
auto inp0 = input0Ptr + start * core->bytes;
auto inp1 = input1Ptr + start * core->bytes;
auto out = outputHost + start * core->bytes;
proc(out, inp0, inp1, realSize, -1);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
for (int i = 2; i < inputs.size(); ++i) {
proc(out, out, inputs[i]->host<uint8_t>() + start * core->bytes, realSize, -1);
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
}
}
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
class CPUEltwiseCreator : public CPUBackend::Creator {
2019-04-17 10:49:11 +08:00
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
auto eltwiseParam = op->main_as_Eltwise();
auto type = eltwiseParam->type();
std::vector<float> coeff;
// keep compatible with old model
if (eltwiseParam->coeff()) {
const int size = eltwiseParam->coeff()->size();
coeff.resize(size);
memcpy(coeff.data(), eltwiseParam->coeff()->data(), size * sizeof(float));
}
return new CPUEltwise(backend, type, coeff);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUEltwiseCreator, OpType_Eltwise);
2019-04-17 10:49:11 +08:00
} // namespace MNN