2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUEltwise.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/07/19.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUEltwise.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
#include <math.h>
|
|
|
|
#include <string.h>
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Concurrency.h"
|
2019-04-17 10:49:11 +08:00
|
|
|
#include <algorithm>
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
CPUEltwise::CPUEltwise(Backend *b, EltwiseType type, std::vector<float> coef) : Execution(b) {
|
|
|
|
mType = type;
|
|
|
|
mCoeff = coef;
|
2019-05-17 14:59:57 +08:00
|
|
|
}
|
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
ErrorCode CPUEltwise::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
auto inputTensor = inputs[0];
|
2021-06-11 17:17:13 +08:00
|
|
|
const int size = static_cast<CPUBackend*>(backend())->getTensorSize(inputTensor);
|
|
|
|
auto core = static_cast<CPUBackend*>(backend())->functions();
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2019-05-17 14:59:57 +08:00
|
|
|
auto outputTensor = outputs[0];
|
2021-06-11 17:17:13 +08:00
|
|
|
auto outputHost = outputTensor->host<uint8_t>();
|
|
|
|
const auto input0Ptr = inputs[0]->host<uint8_t>();
|
|
|
|
const auto input1Ptr = inputs[1]->host<uint8_t>();
|
2019-05-17 14:59:57 +08:00
|
|
|
|
2019-06-17 20:10:35 +08:00
|
|
|
auto coeffSize = mCoeff.size();
|
2019-05-17 14:59:57 +08:00
|
|
|
bool isIdentity = coeffSize >= 2;
|
|
|
|
if (isIdentity) {
|
|
|
|
// when Eltwise has coeff
|
|
|
|
if (mCoeff[0] == 1.0f && mCoeff[1] == 0.0f) {
|
2021-06-11 17:17:13 +08:00
|
|
|
memcpy(outputHost, input0Ptr, size * core->bytes);
|
2019-05-17 14:59:57 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
} else {
|
|
|
|
return NOT_SUPPORT;
|
|
|
|
}
|
|
|
|
}
|
2021-06-11 17:17:13 +08:00
|
|
|
int opType = -1;
|
2019-05-17 14:59:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
switch (mType) {
|
|
|
|
case EltwiseType_PROD:
|
2021-06-11 17:17:13 +08:00
|
|
|
opType = BinaryOpOperation_MUL;
|
2019-04-17 10:49:11 +08:00
|
|
|
break;
|
|
|
|
case EltwiseType_SUM:
|
2021-06-11 17:17:13 +08:00
|
|
|
opType = BinaryOpOperation_ADD;
|
2019-04-17 10:49:11 +08:00
|
|
|
break;
|
|
|
|
case EltwiseType_MAXIMUM:
|
2021-06-11 17:17:13 +08:00
|
|
|
opType = BinaryOpOperation_MAXIMUM;
|
2019-04-17 10:49:11 +08:00
|
|
|
break;
|
2019-06-17 20:10:35 +08:00
|
|
|
case EltwiseType_SUB:
|
2021-06-11 17:17:13 +08:00
|
|
|
opType = BinaryOpOperation_SUB;
|
2019-06-17 20:10:35 +08:00
|
|
|
break;
|
2019-04-17 10:49:11 +08:00
|
|
|
default:
|
|
|
|
MNN_ERROR("Don't support %d type for eltwise", mType);
|
|
|
|
return INPUT_DATA_ERROR;
|
|
|
|
}
|
2021-06-11 17:17:13 +08:00
|
|
|
auto proc = core->MNNSelectBinaryFunctionForFloat(opType);
|
2020-02-26 09:57:17 +08:00
|
|
|
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
|
|
|
|
int sizeDivide = schedule.first;
|
|
|
|
int scheduleNumber = schedule.second;
|
|
|
|
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) {
|
|
|
|
int start = sizeDivide * (int)tId;
|
|
|
|
int realSize = sizeDivide;
|
|
|
|
if (tId == scheduleNumber -1 ) {
|
|
|
|
realSize = size - start;
|
|
|
|
}
|
|
|
|
if (realSize > 0) {
|
|
|
|
auto inputT1 = inputs[1];
|
2021-06-11 17:17:13 +08:00
|
|
|
auto inp0 = input0Ptr + start * core->bytes;
|
|
|
|
auto inp1 = input1Ptr + start * core->bytes;
|
|
|
|
auto out = outputHost + start * core->bytes;
|
|
|
|
|
|
|
|
proc(out, inp0, inp1, realSize, -1);
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
for (int i = 2; i < inputs.size(); ++i) {
|
2021-06-11 17:17:13 +08:00
|
|
|
proc(out, out, inputs[i]->host<uint8_t>() + start * core->bytes, realSize, -1);
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
2019-04-17 10:49:11 +08:00
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
2020-03-17 18:20:21 +08:00
|
|
|
class CPUEltwiseCreator : public CPUBackend::Creator {
|
2019-04-17 10:49:11 +08:00
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
auto eltwiseParam = op->main_as_Eltwise();
|
|
|
|
auto type = eltwiseParam->type();
|
|
|
|
std::vector<float> coeff;
|
|
|
|
// keep compatible with old model
|
|
|
|
if (eltwiseParam->coeff()) {
|
|
|
|
const int size = eltwiseParam->coeff()->size();
|
|
|
|
coeff.resize(size);
|
|
|
|
memcpy(coeff.data(), eltwiseParam->coeff()->data(), size * sizeof(float));
|
|
|
|
}
|
|
|
|
return new CPUEltwise(backend, type, coeff);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
};
|
2020-03-17 18:20:21 +08:00
|
|
|
REGISTER_CPU_OP_CREATOR(CPUEltwiseCreator, OpType_Eltwise);
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
} // namespace MNN
|