MNN/source/backend/opencl/execution/buffer/LoopBufExecution.cpp

475 lines
23 KiB
C++
Raw Normal View History

2023-07-18 09:36:26 +08:00
//
2023-05-18 19:11:50 +08:00
// LoopBufExecution.cpp
// MNN
//
2023-07-18 09:36:26 +08:00
// Created by MNN on 2023/04/23.
2023-05-18 19:11:50 +08:00
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/LoopBufExecution.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
namespace OpenCL {
static void _TileOrPackTensor(Tensor *input, Tensor *output, cl::Kernel& kernel, cl::NDRange &globalWorkSize,
cl::NDRange &localWorkSize, const int Width, const int Height, const int Channel,
2023-09-20 20:16:25 +08:00
const int Batch, OpenCLRuntime *runTime, const std::string &KernelName, std::set<std::string> buildOptions) {
if (TensorUtils::getDescribe(output)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC || TensorUtils::getDescribe(input)->dimensionFormat == MNN::MNN_DATA_FORMAT_NHWC){
buildOptions.emplace("-DMNN_NHWC");
}
2023-05-18 19:11:50 +08:00
kernel = runTime->buildKernel("loop_buf", KernelName, buildOptions);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width * Height), (uint32_t)(UP_DIV(Channel, 4)), (uint32_t)(Batch)};
uint32_t index = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
ret |= kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= kernel.setArg(index++, openCLBuffer(input));
ret |= kernel.setArg(index++, openCLBuffer(output));
ret |= kernel.setArg(index++, Width);
ret |= kernel.setArg(index++, Height);
ret |= kernel.setArg(index++, Channel);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBuf _TileOrPackTensor");
2023-05-18 19:11:50 +08:00
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, kernel).first;
globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
}
static void _setTensorStack(std::vector<Tensor *> &result, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs, const LoopParam *loop) {
if (loop->inputIndexes() != nullptr) {
for (int i = 0; i < loop->inputIndexes()->size(); ++i) {
result[loop->inputIndexes()->data()[i]] = inputs[i];
}
}
for (int i = 0; i < loop->outputIndexes()->size(); ++i) {
result[loop->outputIndexes()->data()[i]] = outputs[i];
}
}
LoopGatherBufExecution::LoopGatherBufExecution(const LoopParam *loop, const MNN::Op *op, Backend *bn)
: CommonExecution(bn, op) {
mLoop = loop;
mTensors.resize(mLoop->tensorNumber());
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
}
ErrorCode LoopGatherBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
_setTensorStack(mTensors, inputs, outputs, mLoop);
mUnits.clear();
mOffsetTensors.clear();
mTmpTensors.resize(2);
int x = cmd->size()->data()[0];
int y = cmd->size()->data()[1];
int z = cmd->size()->data()[2];
int n = mLoop->loopNumber();
auto srcStride = cmd->view()->GetAs<View>(1)->stride()->data();
auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
for (int i = 0; i < 3; ++i) {
mStride_src[i] = srcStride[i];
mStride_dst[i] = dstStride[i];
}
mStride_src[3] = cmd->view()->GetAs<View>(1)->offset();
mStride_dst[3] = cmd->view()->GetAs<View>(0)->offset();
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
::memcpy(mIter, cmd->iterIndexes()->data(), cmd->iterIndexes()->size() * sizeof(int));
// tile input
{
auto input = mTensors[cmd->indexes()->data()[1]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
2023-09-20 20:16:25 +08:00
mTmpTensors[1] = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{Batch, Channel, Height, Width}, Tensor::CAFFE));
2023-05-18 19:11:50 +08:00
mOpenCLBackend->onAcquireBuffer(mTmpTensors[1].get(), Backend::DYNAMIC);
Unit unit;
_TileOrPackTensor(mTensors[cmd->indexes()->data()[1]], mTmpTensors[1].get(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height,Channel, Batch, runTime, "tile_buf", mBuildOptions);
mUnits.emplace_back(unit);
}
for(int i = 0; i < cmd->iterIndexes()->size(); ++i){
if (mIter[i] >= 0) {
auto input = mTensors[cmd->iterIndexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
2023-09-20 20:16:25 +08:00
mOffsetTensors.emplace_back(std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{Batch, Channel, Height, Width}, Tensor::CAFFE)));
2023-05-18 19:11:50 +08:00
mOpenCLBackend->onAcquireBuffer(mOffsetTensors.back().get(), Backend::DYNAMIC);
Unit unit;
_TileOrPackTensor(input, mOffsetTensors.back().get(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, runTime, "tile_buf", mBuildOptions);
mUnits.emplace_back(unit);
}
}
// gather
{
2023-09-20 20:16:25 +08:00
mTmpTensors[0] = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{n, z, y, x}, Tensor::CAFFE));
2023-05-18 19:11:50 +08:00
mOpenCLBackend->onAcquireBuffer(mTmpTensors[0].get(), Backend::DYNAMIC);
int offset_index = 0;
Unit unit;
2023-09-20 20:16:25 +08:00
std::string KernelName = "batch_gather";
unit.kernel = runTime->buildKernel("loop", KernelName, mBuildOptions);
2023-05-18 19:11:50 +08:00
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(x * y), (uint32_t)(z), (uint32_t)(n)};
uint32_t index = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(mTmpTensors[0].get()));
ret |= unit.kernel.setArg(index++, openCLBuffer(mTmpTensors[1].get()));
2023-05-18 19:11:50 +08:00
for (int i = 0; i < cmd->iterIndexes()->size(); ++i) {
if (mIter[i] >= 0) {
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, openCLBuffer(mOffsetTensors[offset_index++].get()));
2023-05-18 19:11:50 +08:00
} else {
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, openCLBuffer(mTensors[cmd->indexes()->data()[1]]));
2023-05-18 19:11:50 +08:00
}
}
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, x);
ret |= unit.kernel.setArg(index++, sizeof(mStride_src), mStride_src);
ret |= unit.kernel.setArg(index++, sizeof(mStride_dst), mStride_dst);
ret |= unit.kernel.setArg(index++, sizeof(mStep), mStep);
ret |= unit.kernel.setArg(index++, sizeof(mIter), mIter);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopGatherBufExecution");
2023-05-18 19:11:50 +08:00
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mUnits.emplace_back(unit);
}
//pack output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
Unit unit;
_TileOrPackTensor(mTmpTensors[0].get(), mTensors[cmd->indexes()->data()[0]], unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, runTime, "pack_buf", mBuildOptions);
mUnits.emplace_back(unit);
}
for (int i = 0; i < mTmpTensors.size(); ++i) {
mOpenCLBackend->onReleaseBuffer(mTmpTensors[i].get(), Backend::DYNAMIC);
}
for (int i = 0; i < mOffsetTensors.size(); ++i) {
mOpenCLBackend->onReleaseBuffer(mOffsetTensors[i].get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
LoopBatchMatMulBufExecution::LoopBatchMatMulBufExecution(const LoopParam *loop, const MNN::Op *op, Backend *bn)
: CommonExecution(bn, op) {
mLoop = loop;
mTensors.resize(mLoop->tensorNumber());
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
mHasBias = cmd->indexes()->size() > 3;
mTransposeA = cmd->op()->main_as_MatMul()->transposeA();
mTransposeB = cmd->op()->main_as_MatMul()->transposeB();
}
ErrorCode LoopBatchMatMulBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
_setTensorStack(mTensors, inputs, outputs, mLoop);
mOffset[0] = cmd->view()->GetAs<View>(0)->offset();
mOffset[1] = cmd->view()->GetAs<View>(1)->offset();
mOffset[2] = cmd->view()->GetAs<View>(2)->offset();
mUnits.clear();
mOffsetTensors.clear();
mTmpTensors.resize(3);
if (mHasBias) {
mTmpTensors.resize(4);
mOffset[3] = cmd->view()->GetAs<View>(3)->offset();
}
::memcpy(mStep, cmd->steps()->data(), cmd->steps()->size() * sizeof(int));
::memcpy(mIter, cmd->iterIndexes()->data(), cmd->iterIndexes()->size() * sizeof(int));
int e = cmd->size()->data()[0];
int l = cmd->size()->data()[1];
int h = cmd->size()->data()[2];
int n = mLoop->loopNumber();
// tile input
for (int i = 1; i < cmd->indexes()->size(); ++i) {
auto input = mTensors[cmd->indexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
2023-12-04 11:12:20 +08:00
mTmpTensors[i] = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{Batch, Channel, ROUND_UP(Height, 4), ROUND_UP(Width, 4)}, Tensor::CAFFE));
2023-05-18 19:11:50 +08:00
mOpenCLBackend->onAcquireBuffer(mTmpTensors[i].get(), Backend::DYNAMIC);
Unit unit;
_TileOrPackTensor(input, mTmpTensors[i].get(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, runTime, "tile_buf", mBuildOptions);
mUnits.emplace_back(unit);
}
for(int i = 0; i < cmd->iterIndexes()->size(); ++i){
if (mIter[i] >= 0) {
auto input = mTensors[cmd->iterIndexes()->data()[i]];
std::vector<int> Shape = tensorShapeFormat(input);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
2023-09-20 20:16:25 +08:00
mOffsetTensors.emplace_back(std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{Batch, Channel, Height, Width}, Tensor::CAFFE)));
2023-05-18 19:11:50 +08:00
mOpenCLBackend->onAcquireBuffer(mOffsetTensors.back().get(), Backend::DYNAMIC);
Unit unit;
_TileOrPackTensor(input, mOffsetTensors.back().get(), unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, runTime, "tile_buf", mBuildOptions);
mUnits.emplace_back(unit);
}
}
// matmul
{
2023-09-20 20:16:25 +08:00
mTmpTensors[0] = std::make_shared<Tensor>(Tensor::createDevice<float>(std::vector<int>{1, n, e, h}, Tensor::CAFFE));
2023-05-18 19:11:50 +08:00
mOpenCLBackend->onAcquireBuffer(mTmpTensors[0].get(), Backend::DYNAMIC);
int offset_index = 0;
Unit unit;
2023-09-20 20:16:25 +08:00
std::string KernelName = "batch_matmul";
2023-05-18 19:11:50 +08:00
if (mHasBias) {
mBuildOptions.emplace("-DBIAS");
}
if (mTransposeA) {
mBuildOptions.emplace("-DTRANSPOSE_A");
}
if (mTransposeB) {
mBuildOptions.emplace("-DTRANSPOSE_B");
}
2023-12-04 11:12:20 +08:00
mBuildOptions.emplace("-DH_LEAVES=" + std::to_string(h % 4));
2023-09-20 20:16:25 +08:00
unit.kernel = runTime->buildKernel("loop", KernelName, mBuildOptions);
2023-05-18 19:11:50 +08:00
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
2023-12-04 11:12:20 +08:00
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(UP_DIV(h, 4)), (uint32_t)(UP_DIV(e, 4)),(uint32_t)(n)};
2023-05-18 19:11:50 +08:00
uint32_t index = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(mTmpTensors[0].get()));
ret |= unit.kernel.setArg(index++, openCLBuffer(mTmpTensors[1].get()));
ret |= unit.kernel.setArg(index++, openCLBuffer(mTmpTensors[2].get()));
2023-05-18 19:11:50 +08:00
if (mHasBias) {
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, openCLBuffer(mTmpTensors[3].get()));
2023-05-18 19:11:50 +08:00
}
for (int i = 0; i < cmd->iterIndexes()->size(); ++i) {
if (mIter[i] >= 0) {
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, openCLBuffer(mOffsetTensors[offset_index++].get()));
2023-05-18 19:11:50 +08:00
} else {
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, openCLBuffer(mTensors[cmd->indexes()->data()[1]]));
2023-05-18 19:11:50 +08:00
}
}
2023-07-31 14:24:48 +08:00
ret |= unit.kernel.setArg(index++, e);
ret |= unit.kernel.setArg(index++, l);
ret |= unit.kernel.setArg(index++, h);
ret |= unit.kernel.setArg(index++, sizeof(mOffset), mOffset);
ret |= unit.kernel.setArg(index++, sizeof(mIter), mIter);
ret |= unit.kernel.setArg(index++, sizeof(mStep), mStep);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBatchMatMulBufExecution");
2023-05-18 19:11:50 +08:00
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mUnits.emplace_back(unit);
}
//pack output
{
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
Unit unit;
_TileOrPackTensor(mTmpTensors[0].get(), output, unit.kernel, unit.globalWorkSize, unit.localWorkSize, Width, Height, Channel, Batch, runTime, "pack_buf", mBuildOptions);
mUnits.emplace_back(unit);
}
for (int i = 0; i < cmd->indexes()->size(); ++i) {
mOpenCLBackend->onReleaseBuffer(mTmpTensors[i].get(), Backend::DYNAMIC);
}
for (int i = 0; i < mOffsetTensors.size(); ++i) {
mOpenCLBackend->onReleaseBuffer(mOffsetTensors[i].get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
2023-09-20 20:16:25 +08:00
LoopBinaryBufExecution::LoopBinaryBufExecution(const LoopParam *loop, const std::string &compute, const MNN::Op *op, Backend *bn)
: CommonExecution(bn, op) {
mLoop = loop;
mTensors.resize(mLoop->tensorNumber());
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
mBuildOptions.emplace("-DLOOP_BINARY_OPERATOR=" + compute);
}
ErrorCode LoopBinaryBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
OpenCLBackend *mOpenCLBackend = (OpenCLBackend *)backend();
auto runTime = mOpenCLBackend->getOpenCLRuntime();
_setTensorStack(mTensors, inputs, outputs, mLoop);
mUnits.clear();
Unit unit;
auto input0 = mTensors[cmd->indexes()->data()[1]];
std::vector<int> Input0Shape = tensorShapeFormat(input0);
int Input0Size[4] = {Input0Shape.at(2), Input0Shape.at(1),Input0Shape.at(3),Input0Shape.at(0)};
auto input1 = mTensors[cmd->indexes()->data()[2]];
std::vector<int> Input1Shape = tensorShapeFormat(input1);
int Input1Size[4] = {Input1Shape.at(2), Input1Shape.at(1),Input1Shape.at(3),Input1Shape.at(0)};
auto output = mTensors[cmd->indexes()->data()[0]];
std::vector<int> Shape = tensorShapeFormat(output);
const int Channel = Shape.at(3);
const int Width = Shape.at(2);
const int Height = Shape.at(1);
const int Batch = Shape.at(0);
const int ChannelBlock = UP_DIV(Channel, 4);
auto BuildOptions = mBuildOptions;
if(Input0Size[2] != Input1Size[2]){
BuildOptions.emplace("-DBROADCAST_CHANNEL");
}
std::string KernelName = "broadcast_binary_buf";
unit.kernel = runTime->buildKernel("loop_buf", KernelName, BuildOptions);
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runTime->getMaxWorkGroupSize(unit.kernel));
std::vector<uint32_t> mGlobalWorkSize = {(uint32_t)(Width), (uint32_t)(Height), (uint32_t)(Batch * ChannelBlock)};
uint32_t index = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[0]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[1]);
ret |= unit.kernel.setArg(index++, mGlobalWorkSize[2]);
ret |= unit.kernel.setArg(index++, openCLBuffer(output));
ret |= unit.kernel.setArg(index++, openCLBuffer(input0));
ret |= unit.kernel.setArg(index++, openCLBuffer(input1));
ret |= unit.kernel.setArg(index++, sizeof(Input0Size), Input0Size);
ret |= unit.kernel.setArg(index++, sizeof(Input1Size), Input1Size);
ret |= unit.kernel.setArg(index++, Width);
ret |= unit.kernel.setArg(index++, Height);
ret |= unit.kernel.setArg(index++, ChannelBlock);
MNN_CHECK_CL_SUCCESS(ret, "setArg LoopBinaryBufExecution");
std::vector<uint32_t> mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runTime, KernelName, unit.kernel).first;
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalWorkSize[0], mLocalWorkSize[1], mLocalWorkSize[2]};
mUnits.emplace_back(unit);
return NO_ERROR;
}
2023-05-18 19:11:50 +08:00
class LoopBufCreator : public OpenCLBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
2023-07-31 14:24:48 +08:00
for (int i = 0; i < inputs.size(); ++i) {
TensorUtils::setTensorSupportPack(inputs[i], false);
}
for (int i = 0; i < outputs.size(); ++i) {
TensorUtils::setTensorSupportPack(outputs[i], false);
}
2023-05-18 19:11:50 +08:00
auto loop = op->main_as_LoopParam();
if (nullptr == loop || loop->commands() == nullptr) {
return nullptr;
}
if (nullptr != loop->initCommand()) {
return nullptr;
}
// Make Tensor Stack
if (1 == loop->commands()->size()) {
auto cmd = loop->commands()->GetAs<RegionCommand>(0);
auto subop = cmd->op();
if (OpType_UnaryOp == subop->type() && nullptr == subop->main() && cmd->fuse() < 0) {
return new LoopGatherBufExecution(loop, op, backend);
}
if (OpType_MatMul == subop->type() && loop->parallel()) {
return new LoopBatchMatMulBufExecution(loop, op, backend);
}
2023-09-20 20:16:25 +08:00
if (OpType_BinaryOp == subop->type() && loop->parallel()) {
switch (subop->main_as_BinaryOp()->opType()) {
case BinaryOpOperation_MUL:
return new LoopBinaryBufExecution(loop, "in0*in1", op, backend);
case BinaryOpOperation_ADD:
return new LoopBinaryBufExecution(loop, "in0+in1", op, backend);
case BinaryOpOperation_SUB:
return new LoopBinaryBufExecution(loop, "in0-in1", op, backend);
case BinaryOpOperation_REALDIV:
return new LoopBinaryBufExecution(loop, "sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001))", op, backend);
case BinaryOpOperation_MINIMUM:
return new LoopBinaryBufExecution(loop, "in0>in1?in1:in0", op, backend);
case BinaryOpOperation_MAXIMUM:
return new LoopBinaryBufExecution(loop, "in0>in1?in0:in1", op, backend);
case BinaryOpOperation_GREATER:
return new LoopBinaryBufExecution(loop, "convert_float4(-isgreater(in0,in1))", op, backend);
case BinaryOpOperation_LESS:
return new LoopBinaryBufExecution(loop, "convert_float4(-isless(in0,in1))", op, backend);
case BinaryOpOperation_LESS_EQUAL:
return new LoopBinaryBufExecution(loop, "convert_float4(-islessequal(in0,in1))", op, backend);
case BinaryOpOperation_GREATER_EQUAL:
return new LoopBinaryBufExecution(loop, "convert_float4(-isgreaterequal(in0,in1))", op, backend);
case BinaryOpOperation_EQUAL:
return new LoopBinaryBufExecution(loop, "convert_float4(-isequal(in0,in1))", op, backend);
case BinaryOpOperation_FLOORDIV:
return new LoopBinaryBufExecution(loop, "floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))", op, backend);
case BinaryOpOperation_FLOORMOD:
return new LoopBinaryBufExecution(loop, "in0-floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))*in1", op, backend);
case BinaryOpOperation_POW:
return new LoopBinaryBufExecution(loop, "pow(in0,in1)", op, backend);
case BinaryOpOperation_SquaredDifference:
return new LoopBinaryBufExecution(loop, "(in0-in1)*(in0-in1)", op, backend);
case BinaryOpOperation_ATAN2:
return new LoopBinaryBufExecution(loop, "atan(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))", op, backend);
case BinaryOpOperation_NOTEQUAL:
return new LoopBinaryBufExecution(loop, "convert_float4(-isnotequal(in0,in1))", op, backend);
case BinaryOpOperation_MOD:
return new LoopBinaryBufExecution(loop, "in0-floor(sign(in1)*in0/(fabs(in1)>(FLOAT4)((FLOAT)0.0000001)?fabs(in1):(FLOAT4)((FLOAT)0.0000001)))*in1", op, backend);
default:
break;
}
return nullptr;
}
2023-05-18 19:11:50 +08:00
}
return nullptr;
}
};
OpenCLCreatorRegister<LoopBufCreator> __LoopBuf_op(OpType_While, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */