mirror of https://github.com/alibaba/MNN.git
189 lines
8.7 KiB
C++
189 lines
8.7 KiB
C++
|
//
|
||
|
// DenseConvolutionTiledExecutor.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2018/07/16.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "DenseConvolutionTiledExecutor.hpp"
|
||
|
#include <MNN/AutoTime.hpp>
|
||
|
#include "backend/cpu/CPUBackend.hpp"
|
||
|
#include "CommonOptFunction.h"
|
||
|
#include "core/Concurrency.h"
|
||
|
#include "ConvOpt.h"
|
||
|
#include "core/Macro.h"
|
||
|
#include "core/TensorUtils.hpp"
|
||
|
#include "math/Vec.hpp"
|
||
|
#include "core/BufferAllocator.hpp"
|
||
|
#include "core/MemoryFormater.h"
|
||
|
|
||
|
using Vec4 = MNN::Math::Vec<float, 4>;
|
||
|
namespace MNN {
|
||
|
|
||
|
void DenseConvolutionTiledExecutor::initWeight(float *dest, const float *source, float* cache, int depth, int outputCount, int kernelSize, const CoreFunctions* function) {
|
||
|
ConvolutionTiledExecutor::initWeight(source, cache, depth, outputCount, kernelSize, function);
|
||
|
function->MNNPackForMatMul_B(dest, cache, outputCount, kernelSize * depth, true);
|
||
|
/*MNN_PRINT("dense weight matrix tile:");
|
||
|
formatMatrix(dest, {UP_DIV(outputCount, 4), kernelSize * depth, 4});*/
|
||
|
}
|
||
|
|
||
|
DenseConvolutionTiledExecutor::DenseConvolutionTiledExecutor(const Convolution2DCommon* common, Backend* b,
|
||
|
const float* originWeight, size_t originWeightSize,
|
||
|
const float* bias, size_t biasSize)
|
||
|
: ConvolutionTiledExecutor(b, bias, biasSize) {
|
||
|
|
||
|
auto outputCount = (int)biasSize;
|
||
|
int eP, lP, hP;
|
||
|
auto core = static_cast<CPUBackend*>(b)->functions();
|
||
|
int bytes = core->bytes;
|
||
|
core->MNNGetMatMulPackMode(&eP, &lP, &hP);
|
||
|
// Don't use common->inputCount for old model common->inputCount is zero
|
||
|
auto srcCount = (int)originWeightSize / outputCount / common->kernelX() / common->kernelY();
|
||
|
auto lSize = srcCount * common->kernelX() * common->kernelY();
|
||
|
mResource->mWeight.reset(Tensor::createDevice<uint8_t>(
|
||
|
{UP_DIV(outputCount, hP) * UP_DIV(lSize, lP) * hP * lP * bytes}));
|
||
|
std::shared_ptr<Tensor> cache(Tensor::createDevice<uint8_t>({outputCount * srcCount * common->kernelX() * common->kernelY() * (int)sizeof(float)})); // cache must be float
|
||
|
|
||
|
mValid = mValid && backend()->onAcquireBuffer(mResource->mWeight.get(), Backend::STATIC);
|
||
|
mValid = mValid && backend()->onAcquireBuffer(cache.get(), Backend::STATIC);
|
||
|
if (!mValid) {
|
||
|
return;
|
||
|
}
|
||
|
initWeight(mResource->mWeight->host<float>(), originWeight, cache->host<float>(), srcCount, outputCount, common->kernelX() * common->kernelY(), core);
|
||
|
backend()->onReleaseBuffer(cache.get(), Backend::STATIC);
|
||
|
mProxy.reset(new DenseConvolutionTiledImpl(common, b));
|
||
|
}
|
||
|
|
||
|
DenseConvolutionTiledExecutor::DenseConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res, const Convolution2DCommon* common, Backend* b) : ConvolutionTiledExecutor(res, b) {
|
||
|
mProxy.reset(new DenseConvolutionTiledImpl(common, b));
|
||
|
}
|
||
|
|
||
|
DenseConvolutionTiledExecutor::~DenseConvolutionTiledExecutor() {
|
||
|
// Do nothing
|
||
|
}
|
||
|
bool DenseConvolutionTiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
|
||
|
if (!mValid) {
|
||
|
return false;
|
||
|
}
|
||
|
if (nullptr == dst) {
|
||
|
return true;
|
||
|
}
|
||
|
*dst = new DenseConvolutionTiledExecutor(mResource, op->main_as_Convolution2D()->common(), bn);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
ErrorCode ConvolutionTiledExecutorMultiInput::onExecute(const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) {
|
||
|
int depth = inputs[1]->channel();
|
||
|
int outputCount = inputs[1]->batch();
|
||
|
auto function = static_cast<CPUBackend*>(backend())->functions();
|
||
|
if (nullptr != mTempBias) {
|
||
|
::memset(mTempBias->host<float>(), 0, mTempBias->elementSize() * function->bytes);
|
||
|
if (inputs.size() > 2) {
|
||
|
::memcpy(mTempBias->host<float>(), inputs[2]->host<float>(), inputs[2]->elementSize() * function->bytes);
|
||
|
}
|
||
|
}
|
||
|
auto cache = mTempWeightCache->host<float>();
|
||
|
auto source = inputs[1]->host<float>();
|
||
|
auto kernelSize = inputs[1]->width() * inputs[1]->height();
|
||
|
// Swap k, ic
|
||
|
int dims[4] = {
|
||
|
depth,
|
||
|
kernelSize,
|
||
|
kernelSize,
|
||
|
depth
|
||
|
};
|
||
|
if (function->bytes < 4) {
|
||
|
// TODO: Opt it
|
||
|
// Lowp
|
||
|
source = mTempWeightCache->host<float>() + mTempWeightCache->stride(0);
|
||
|
function->MNNLowpToFp32(inputs[1]->host<int16_t>(), source, inputs[1]->elementSize());
|
||
|
for (int o=0; o<outputCount; ++o) {
|
||
|
auto dO = cache + o * depth * kernelSize;
|
||
|
auto sO = source + o * depth * kernelSize;
|
||
|
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
|
||
|
}
|
||
|
function->MNNFp32ToLowp(cache, (int16_t*)cache, inputs[1]->elementSize());
|
||
|
} else {
|
||
|
for (int o=0; o<outputCount; ++o) {
|
||
|
auto dO = cache + o * depth * kernelSize;
|
||
|
auto sO = source + o * depth * kernelSize;
|
||
|
MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
|
||
|
}
|
||
|
}
|
||
|
function->MNNPackForMatMul_B(mTempWeight->host<float>(), mTempWeightCache->host<float>(), outputCount, inputs[1]->width() * inputs[1]->height() * depth, true);
|
||
|
return mProxy->onExecute(mInputs, outputs);
|
||
|
}
|
||
|
ErrorCode ConvolutionTiledExecutorMultiInput::onResize(const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) {
|
||
|
int depth = inputs[1]->channel();
|
||
|
int outputCount = outputs[0]->channel();
|
||
|
auto function = static_cast<CPUBackend*>(backend())->functions();
|
||
|
int eP, lP, hP;
|
||
|
function->MNNGetMatMulPackMode(&eP, &lP, &hP);
|
||
|
auto kernelSize = depth * inputs[1]->width() * inputs[1]->height();
|
||
|
mTempWeight.reset(Tensor::createDevice<float>(
|
||
|
{UP_DIV(outputCount, hP), UP_DIV(kernelSize, lP), lP * hP}));
|
||
|
if (function->bytes < 4) {
|
||
|
mTempWeightCache.reset(Tensor::createDevice<int32_t>({2, outputCount * kernelSize}));
|
||
|
} else {
|
||
|
mTempWeightCache.reset(Tensor::createDevice<float>({outputCount * kernelSize}));
|
||
|
}
|
||
|
auto res = backend()->onAcquireBuffer(mTempWeight.get(), Backend::DYNAMIC);
|
||
|
res = res && backend()->onAcquireBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
|
||
|
mTempBias.reset();
|
||
|
if (!res) {
|
||
|
return OUT_OF_MEMORY;
|
||
|
}
|
||
|
if (inputs.size() > 2 && inputs[2]->elementSize() % function->pack == 0) {
|
||
|
mInputs = {inputs[0], mTempWeight.get(), inputs[2]};
|
||
|
} else {
|
||
|
mTempBias.reset(Tensor::createDevice<float>({UP_DIV(outputCount, function->pack) * function->pack}));
|
||
|
backend()->onAcquireBuffer(mTempBias.get(), Backend::DYNAMIC);
|
||
|
mInputs = {inputs[0], mTempWeight.get(), mTempBias.get()};
|
||
|
}
|
||
|
backend()->onReleaseBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
|
||
|
auto errorCode = mProxy->onResize(mInputs, outputs);
|
||
|
backend()->onReleaseBuffer(mTempWeight.get(), Backend::DYNAMIC);
|
||
|
if (nullptr != mTempBias) {
|
||
|
backend()->onReleaseBuffer(mTempBias.get(), Backend::DYNAMIC);
|
||
|
}
|
||
|
return errorCode;
|
||
|
}
|
||
|
|
||
|
|
||
|
void DenseConvolutionTiledImpl::getPackParameter(int* eP, int* lP, int* hP, const CoreFunctions* core) {
|
||
|
core->MNNGetMatMulPackMode(eP, lP, hP);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#define GENERATE_FUNCTOR() \
|
||
|
auto matmulUnit = core->MNNPackedMatMul; \
|
||
|
auto matmulRemain = core->MNNPackedMatMulRemain;
|
||
|
|
||
|
#define GENERATE_WEIGHT() \
|
||
|
auto weightPtr = weight->host<float>();
|
||
|
|
||
|
#define GENERATE_MM() \
|
||
|
if (xC == CONVOLUTION_TILED_NUMBER) { \
|
||
|
matmulUnit((float*)(dstOrigin + start * unit * bytes), (float*)gemmBuffer, weightPtr, parameters.data(), \
|
||
|
postParameters.data(), biasPtr); \
|
||
|
} else { \
|
||
|
matmulRemain((float*)(dstOrigin + start * unit * bytes), (float*)gemmBuffer, weightPtr, xC, parameters.data(), \
|
||
|
postParameters.data(), biasPtr); \
|
||
|
} \
|
||
|
/*MNN_PRINT("formatMatrix gemm. xC:%d, eP:%d\n", xC, eP);*/ \
|
||
|
/*formatMatrix((float*)(dstOrigin + start * 4 * bytes), {UP_DIV(outputChannel, hP), xC, hP});*/
|
||
|
|
||
|
ErrorCode DenseConvolutionTiledImpl::onResize(const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) {
|
||
|
GENERATE_RESIZE();
|
||
|
}
|
||
|
|
||
|
#undef GENERATE_FUNCTOR
|
||
|
#undef GENERATE_WEIGHT
|
||
|
#undef GENERATE_MM
|
||
|
|
||
|
} // namespace MNN
|