MNN/source/backend/cpu/compute/SparseConvolutionTiledExecu...

145 lines
7.8 KiB
C++
Raw Normal View History

//
// SparseConvolutionTiledExecutor
// MNN
//
// Created by MNN on 2021/04/06.
// Copyright © 2018-2021 Alibaba Group Holding Limited.
//
#include "SparseConvolutionTiledExecutor.hpp"
#include <MNN/AutoTime.hpp>
#include "backend/cpu/CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "core/Concurrency.h"
#include "ConvOpt.h"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "math/Vec.hpp"
#include "core/BufferAllocator.hpp"
#include "core/MemoryFormater.h"
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
void SparseConvolutionTiledExecutor::initWeight(float* dest, unsigned int* NNZMap, int* dataOffsetMap,
int sparseBlockOC, const float* source, float* cache, int depth,
int outputCount, int kernelSize, int eP, size_t weightNNZElement,
size_t weightBlockNumber, const CoreFunctions* function) {
ConvolutionTiledExecutor::initWeight(source, cache, depth, outputCount, kernelSize, function);
function->MNNPackForSparseMatMul_B(dest, NNZMap, dataOffsetMap, sparseBlockOC, cache, outputCount, kernelSize * depth, eP, false);
// MNN_PRINT("\nBCSR new weight:");
// formatMatrix(dest, {static_cast<int>(weightNNZElement)});
// MNN_PRINT("\nBCSR weight nnzmap:");
// formatMatrix(NNZMap, {outputCount / sparseBlockOC + outputCount % sparseBlockOC});
// MNN_PRINT("\nBCSR weight dataOffsetMap:");
// formatMatrix(dataOffsetMap, {static_cast<int>(weightBlockNumber + 1)});
}
SparseConvolutionTiledExecutor::SparseConvolutionTiledExecutor(const Convolution2DCommon *common, Backend* b,
const float* originWeight, size_t originWeightSize, const SparseCommon* sparseCommon,
const float* bias, size_t biasSize)
: ConvolutionTiledExecutor(b, bias, biasSize) {
auto outputCount = (int)biasSize;
int eP, lP, hP;
auto core = static_cast<CPUBackend*>(b)->functions();
int bytes = core->bytes;
core->MNNGetSparseMatMulPackMode(&eP, &lP, &hP);
auto sparseBlockOC = sparseCommon->args()->LookupByKey("sparseBlockOC")->i();
size_t weightNNZElement = sparseCommon->args()->LookupByKey("NNZElement")->i();
size_t weightBlockNumber = sparseCommon->args()->LookupByKey("blockNumber")->i();
hP = sparseBlockOC; // should broadcast sparseBlockOC to other caller.
MNN_ASSERT(hP == 1 || hP == 2 || hP == 4);
// Don't use common->inputCount for old model common->inputCount is zero
auto lSize = originWeightSize / outputCount;
auto srcCount = lSize / (common->kernelX() * common->kernelY());
// MNN_PRINT("1x%d weightNNZElement%zu, weightBlockNumber:%zu\n", sparseBlockOC, weightNNZElement, weightBlockNumber);
mResource->mWeight.reset(Tensor::createDevice<uint8_t>(
{ static_cast<int>(weightNNZElement + 1) * bytes })); // one more element in case of weight are all zeros
std::shared_ptr<Tensor> cache(Tensor::createDevice<uint8_t>({static_cast<int>(outputCount * lSize * sizeof(float))})); // cache must be float
mNNZMap.reset(Tensor::createDevice<unsigned int>({outputCount / sparseBlockOC + outputCount % sparseBlockOC}));
mDataOffsetMap.reset(Tensor::createDevice<int>({static_cast<int>(weightBlockNumber + 1)}));
mValid = backend()->onAcquireBuffer(mResource->mWeight.get(), Backend::STATIC);
mValid = mValid && backend()->onAcquireBuffer(cache.get(), Backend::STATIC);
mValid = mValid && backend()->onAcquireBuffer(mNNZMap.get(), Backend::STATIC);
mValid = mValid && backend()->onAcquireBuffer(mDataOffsetMap.get(), Backend::STATIC);
if (!mValid) {
return;
}
initWeight(mResource->mWeight->host<float>(), mNNZMap->host<unsigned int>(), mDataOffsetMap->host<int>(), sparseBlockOC, originWeight, cache->host<float>(), srcCount, outputCount, common->kernelX() * common->kernelY(), eP, weightNNZElement, weightBlockNumber, core);
backend()->onReleaseBuffer(cache.get(), Backend::STATIC);
mProxy.reset(new SparseConvolutionTiledImpl(common, sparseCommon, b));
}
SparseConvolutionTiledExecutor::SparseConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res,
std::shared_ptr<Tensor> NNZMapSharePtr,
std::shared_ptr<Tensor> dataOffsetMapSharePtr,
const Convolution2DCommon *common,
const SparseCommon* sparseCommon, Backend* b)
:mNNZMap(NNZMapSharePtr),
mDataOffsetMap(dataOffsetMapSharePtr),
ConvolutionTiledExecutor(res, b) {
mProxy.reset(new SparseConvolutionTiledImpl(common, sparseCommon, b));
}
SparseConvolutionTiledExecutor::~SparseConvolutionTiledExecutor() {
// Do nothing
}
bool SparseConvolutionTiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new SparseConvolutionTiledExecutor(mResource, mNNZMap, mDataOffsetMap, op->main_as_Convolution2D()->common(), mProxy->mSparseCommon, bn);
return true;
}
void SparseConvolutionTiledImpl::getPackParameter(int* eP, int* lP, int* hP, const CoreFunctions* core) {
core->MNNGetSparseMatMulPackMode(eP, lP, hP);
return;
}
#define GENERATE_FUNCTOR() \
auto sparseMatmul = \
mSparseBlockOC == 4 ? core->MNNPackedSparseMatMulEpx4 : core->MNNPackedSparseMatMulEpx1;
#define GENERATE_WEIGHT() \
auto weightPtr = weight->host<float>(); \
auto NNZMapPtr = NNZMap->host<unsigned int>(); \
auto dataOffsetPtr = dataOffsetMap->host<int>();
#define GENERATE_MM() \
/*MNN_PRINT("inputdata matrix tile:"); */ \
/*formatMatrix((float*)gemmBuffer, {UP_DIV(xC, eP), L, eP});*/ \
/* SPMM */ \
/*MNN_PRINT("PackedSparseMatMul packNumber:%d, eP:%d, eSize:%d, l:%zu, h:%zu, cStride:%zu, aStride:%zu\n",*/ \
/*number, eP, xC, parameters[1], parameters[2], parameters[3] / bytes, eP * parameters[1]);*/ \
/*Timer kernelTimer;*/ \
/*for (int multi = 0; multi < 1000; multi++) {*/ \
sparseMatmul((float*)(dstOrigin + start * unit * bytes), (float*)gemmBuffer, weightPtr, xC, parameters.data(), \
postParameters.data(), biasPtr, NNZMapPtr, dataOffsetPtr); \
/*}*/ \
/*MNN_PRINT("cost time: %lu us\n", kernelTimer.durationInUs());*/ \
/*MNN_PRINT("spmm sparseMatmul tile:\n");*/ \
/*formatMatrix((float*)(dstOrigin + start * unit * bytes), {UP_DIV(outputChannel, 4), xC, 4});*/
ErrorCode SparseConvolutionTiledImpl::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Tensor* NNZMap, Tensor* dataOffsetMap) {
GENERATE_RESIZE();
}
#undef GENERATE_FUNCTOR
#undef GENERATE_WEIGHT
#undef GENERATE_MM
} // namespace MNN