2021-03-12 18:41:50 +08:00
|
|
|
//
|
|
|
|
// BufferConvertor.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2020/09/25.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
|
|
|
|
#include "backend/opencl/core/BufferConvertor.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
namespace OpenCL {
|
|
|
|
bool convertNCHWBufferToNC4HW4Buffer(const Tensor *input, Tensor *output, cl::Kernel &convertBufferKernel,
|
|
|
|
OpenCLRuntime *runtime, bool needInpTrans, bool needWait) {
|
|
|
|
std::vector<int> outputShape = tensorShapeFormat(input);
|
|
|
|
|
|
|
|
uint32_t outputGlobalWorkSize[2] = {static_cast<uint32_t>(UP_DIV(outputShape[3], 4) * outputShape[2]),
|
|
|
|
static_cast<uint32_t>(outputShape[0] * outputShape[1])};
|
|
|
|
if (convertBufferKernel.get() == nullptr) {
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
if(needInpTrans) {
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_INP_TRANS");
|
|
|
|
}
|
|
|
|
convertBufferKernel = runtime->buildKernel("buffer_convert_buf", "nchw_buffer_to_nc4hw4_buffer", buildOptions);
|
|
|
|
}
|
|
|
|
uint32_t idx = 0;
|
|
|
|
convertBufferKernel.setArg(idx++, outputGlobalWorkSize[0]);
|
|
|
|
convertBufferKernel.setArg(idx++, outputGlobalWorkSize[1]);
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(input));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[1]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[2]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[3]));
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(output));
|
|
|
|
|
|
|
|
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernel));
|
|
|
|
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
|
|
|
|
cl::Event event;
|
|
|
|
cl_int res;
|
|
|
|
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
|
|
|
|
for (size_t i = 0; i < lws.size(); ++i) {
|
|
|
|
roundUpGroupWorkSize[i] = ROUND_UP(outputGlobalWorkSize[i], lws[i]);
|
|
|
|
}
|
|
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
|
|
|
|
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
|
|
|
|
cl::NDRange(lws[0], lws[1]), nullptr, &event);
|
|
|
|
MNN_CHECK_CL_SUCCESS(res, "nchw_buffer_to_nc4hw4_buffer");
|
|
|
|
|
|
|
|
if (true == needWait) {
|
|
|
|
event.wait();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool convertNHWCBufferToNC4HW4Buffer(const Tensor *input, Tensor *output, cl::Kernel &convertBufferKernel,
|
|
|
|
OpenCLRuntime *runtime, bool needInpTrans, bool needWait) {
|
|
|
|
std::vector<int> outputShape = tensorShapeFormat(input);
|
|
|
|
uint32_t outputGlobalWorkSize[2] = {static_cast<uint32_t>(UP_DIV(outputShape[3], 4) * outputShape[2]),
|
|
|
|
static_cast<uint32_t>(outputShape[0] * outputShape[1])};
|
|
|
|
if (convertBufferKernel.get() == nullptr) {
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
if(needInpTrans) {
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_INP_TRANS");
|
|
|
|
}
|
|
|
|
convertBufferKernel = runtime->buildKernel("buffer_convert_buf", "nhwc_buffer_to_nc4hw4_buffer", buildOptions);
|
|
|
|
}
|
|
|
|
uint32_t idx = 0;
|
|
|
|
convertBufferKernel.setArg(idx++, outputGlobalWorkSize[0]);
|
|
|
|
convertBufferKernel.setArg(idx++, outputGlobalWorkSize[1]);
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(input));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[1]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[2]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(outputShape[3]));
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(output));
|
|
|
|
|
|
|
|
|
|
|
|
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernel));
|
|
|
|
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
|
|
|
|
cl::Event event;
|
|
|
|
cl_int res;
|
|
|
|
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
|
|
|
|
for (size_t i = 0; i < lws.size(); ++i) {
|
|
|
|
roundUpGroupWorkSize[i] = ROUND_UP(outputGlobalWorkSize[i], lws[i]);
|
|
|
|
}
|
|
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
|
|
|
|
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
|
|
|
|
cl::NDRange(lws[0], lws[1]), nullptr, &event);
|
|
|
|
MNN_CHECK_CL_SUCCESS(res, "nhwc_buffer_to_nc4hw4_buffer");
|
|
|
|
if (true == needWait) {
|
|
|
|
event.wait();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool convertNC4HW4BufferToNC4HW4Buffer(const Tensor *input, Tensor *output, cl::Kernel &convertBufferKernel,
|
2021-04-28 18:02:10 +08:00
|
|
|
OpenCLRuntime *runtime, TransType formatTrans, bool needWait) {
|
2021-03-12 18:41:50 +08:00
|
|
|
|
|
|
|
uint32_t outputGlobalWorkSize[2] = {static_cast<uint32_t>(UP_DIV(input->channel(), 4) * input->width()),
|
|
|
|
static_cast<uint32_t>(input->batch() * input->height())};
|
|
|
|
if (convertBufferKernel.get() == nullptr) {
|
|
|
|
std::set<std::string> buildOptions;
|
2021-04-28 18:02:10 +08:00
|
|
|
switch (formatTrans) {
|
|
|
|
case InpTrans:
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_INP_TRANS");
|
|
|
|
break;
|
|
|
|
case OutTrans:
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_OUT_TRANS");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
2021-03-12 18:41:50 +08:00
|
|
|
}
|
|
|
|
convertBufferKernel = runtime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nc4hw4_buffer", buildOptions);
|
|
|
|
}
|
|
|
|
uint32_t idx = 0;
|
|
|
|
int outputImageShape[2] = {input->height(), input->width()};
|
|
|
|
convertBufferKernel.setArg(idx++, outputGlobalWorkSize[0]);
|
|
|
|
convertBufferKernel.setArg(idx++, outputGlobalWorkSize[1]);
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(input));
|
|
|
|
convertBufferKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
|
|
|
|
convertBufferKernel.setArg(idx++, UP_DIV(input->channel(), 4));
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(output));
|
|
|
|
|
|
|
|
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernel));
|
|
|
|
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
|
|
|
|
cl::Event event;
|
|
|
|
cl_int res;
|
|
|
|
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
|
|
|
|
for (size_t i = 0; i < lws.size(); ++i) {
|
|
|
|
roundUpGroupWorkSize[i] = ROUND_UP(outputGlobalWorkSize[i], lws[i]);
|
|
|
|
}
|
|
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
|
|
|
|
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
|
|
|
|
cl::NDRange(lws[0], lws[1]), nullptr, &event);
|
|
|
|
MNN_CHECK_CL_SUCCESS(res, "nc4hw4_buffer_to_nc4hw4_buffer");
|
|
|
|
if (true == needWait) {
|
|
|
|
event.wait();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool convertNC4HW4BufferToNCHWBuffer(const Tensor *input, Tensor *output, cl::Kernel &convertBufferKernel,
|
|
|
|
OpenCLRuntime *runtime, bool needOutTrans, bool needWait) {
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
|
|
uint32_t in_gws[2] = {static_cast<uint32_t>(UP_DIV(inputShape[3], 4) * inputShape[2]),
|
|
|
|
static_cast<uint32_t>(inputShape[0] * inputShape[1])};
|
|
|
|
|
|
|
|
if (convertBufferKernel.get() == nullptr) {
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
if(needOutTrans) {
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_OUT_TRANS");
|
|
|
|
}
|
|
|
|
convertBufferKernel = runtime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nchw_buffer", buildOptions);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t idx = 0;
|
|
|
|
convertBufferKernel.setArg(idx++, in_gws[0]);
|
|
|
|
convertBufferKernel.setArg(idx++, in_gws[1]);
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(output));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[1]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[2]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[3]));
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(input));
|
|
|
|
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernel));
|
|
|
|
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
|
|
|
|
cl::Event event;
|
|
|
|
cl_int res;
|
|
|
|
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
|
|
|
|
for (size_t i = 0; i < lws.size(); ++i) {
|
|
|
|
roundUpGroupWorkSize[i] = ROUND_UP(in_gws[i], lws[i]);
|
|
|
|
}
|
|
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
|
|
|
|
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
|
|
|
|
cl::NDRange(lws[0], lws[1]), nullptr, &event);
|
|
|
|
MNN_CHECK_CL_SUCCESS(res, "nc4hw4_buffer_to_nchw_buffer");
|
|
|
|
|
|
|
|
if (true == needWait) {
|
|
|
|
event.wait();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool convertNC4HW4BufferToNHWCBuffer(const Tensor *input, Tensor *output, cl::Kernel &convertBufferKernel,
|
|
|
|
OpenCLRuntime *runtime, bool needOutTrans, bool needWait) {
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
|
|
uint32_t in_gws[2] = {static_cast<uint32_t>(UP_DIV(inputShape[3], 4) * inputShape[2]),
|
|
|
|
static_cast<uint32_t>(inputShape[0] * inputShape[1])};
|
|
|
|
|
|
|
|
if (convertBufferKernel.get() == nullptr) {
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
if(needOutTrans) {
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_OUT_TRANS");
|
|
|
|
}
|
|
|
|
convertBufferKernel = runtime->buildKernel("buffer_convert_buf", "nc4hw4_buffer_to_nhwc_buffer", buildOptions);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t idx = 0;
|
|
|
|
convertBufferKernel.setArg(idx++, in_gws[0]);
|
|
|
|
convertBufferKernel.setArg(idx++, in_gws[1]);
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(output));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[1]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[2]));
|
|
|
|
convertBufferKernel.setArg(idx++, static_cast<uint32_t>(inputShape[3]));
|
|
|
|
convertBufferKernel.setArg(idx++, openCLBuffer(input));
|
|
|
|
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(convertBufferKernel));
|
|
|
|
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
|
|
|
|
cl::Event event;
|
|
|
|
cl_int res;
|
|
|
|
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
|
|
|
|
for (size_t i = 0; i < lws.size(); ++i) {
|
|
|
|
roundUpGroupWorkSize[i] = ROUND_UP(in_gws[i], lws[i]);
|
|
|
|
}
|
|
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(convertBufferKernel, cl::NullRange,
|
|
|
|
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
|
|
|
|
cl::NDRange(lws[0], lws[1]), nullptr, &event);
|
|
|
|
MNN_CHECK_CL_SUCCESS(res, "nc4hw4_buffer_to_nhwc_buffer");
|
|
|
|
|
|
|
|
if (true == needWait) {
|
|
|
|
event.wait();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BufferConvertor::convertToNC4HW4Buffer(const Tensor *buffer, const OpenCLBufferFormat type, Tensor *image, bool needTrans, bool needWait) {
|
|
|
|
#ifdef LOG_VERBOSE
|
|
|
|
MNN_PRINT("start convertBufferToNC4HW4Buffer !\n");
|
|
|
|
#endif
|
|
|
|
auto formattedBufferShape = tensorShapeFormat(buffer);//NHWC
|
|
|
|
std::vector<size_t> imageShape;
|
|
|
|
getImageShape(formattedBufferShape, type, &imageShape);
|
|
|
|
|
|
|
|
uint32_t gws[2] = {static_cast<uint32_t>(imageShape[0]), static_cast<uint32_t>(imageShape[1])};
|
|
|
|
|
|
|
|
auto runtime = mOpenCLRuntime;
|
|
|
|
std::string kernelName;
|
|
|
|
switch (type) {
|
|
|
|
case CONV2D_FILTER:
|
|
|
|
kernelName = "conv2d_filter_buffer_to_nc4hw4_buffer";//NC4HW4 (1, 4*ic/4, kw*kh*oc/4, 1)*4
|
|
|
|
break;
|
|
|
|
case DW_CONV2D_FILTER:
|
|
|
|
kernelName = "dw_filter_buffer_to_nc4hw4_buffer";//NC4HW4 (1, kw*kh, oc/4, 1)*4
|
|
|
|
case NHWC_BUFFER:
|
|
|
|
case NCHW_BUFFER:
|
|
|
|
case ARGUMENT:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (mBufferToImageKernel.get() == nullptr || mBufferToImageKernelName != kernelName) {
|
|
|
|
mBufferToImageKernelName = kernelName;
|
|
|
|
std::set<std::string> buildOptions;
|
|
|
|
if(needTrans) {
|
|
|
|
buildOptions.emplace("-DBUFFER_FORMAT_INP_TRANS");
|
|
|
|
}
|
|
|
|
mBufferToImageKernel = runtime->buildKernel("buffer_convert_buf", kernelName, buildOptions);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t idx = 0;
|
|
|
|
mBufferToImageKernel.setArg(idx++, gws[0]);
|
|
|
|
mBufferToImageKernel.setArg(idx++, gws[1]);
|
|
|
|
|
|
|
|
mBufferToImageKernel.setArg(idx++, openCLBuffer(buffer));
|
|
|
|
|
|
|
|
if (type == CONV2D_FILTER) {
|
|
|
|
const int channelHeightWidthSumSize =
|
|
|
|
buffer->buffer().dim[1].extent * buffer->buffer().dim[2].extent * buffer->buffer().dim[3].extent;
|
|
|
|
const int heightWidthSumSize = buffer->buffer().dim[2].extent * buffer->buffer().dim[3].extent;
|
|
|
|
int kernelShape[2] = {buffer->buffer().dim[2].extent, buffer->buffer().dim[3].extent};
|
|
|
|
mBufferToImageKernel.setArg(idx++, static_cast<uint32_t>(buffer->buffer().dim[0].extent));
|
|
|
|
mBufferToImageKernel.setArg(idx++, sizeof(kernelShape),kernelShape);
|
|
|
|
mBufferToImageKernel.setArg(idx++, static_cast<uint32_t>(channelHeightWidthSumSize));
|
|
|
|
mBufferToImageKernel.setArg(idx++, static_cast<uint32_t>(heightWidthSumSize));
|
|
|
|
} else if (type == DW_CONV2D_FILTER) {
|
|
|
|
const int heightWidthSumSize = buffer->buffer().dim[2].extent * buffer->buffer().dim[3].extent;
|
|
|
|
int kernelShape[4] = {buffer->buffer().dim[0].extent, buffer->buffer().dim[1].extent, buffer->buffer().dim[2].extent, buffer->buffer().dim[3].extent};
|
|
|
|
mBufferToImageKernel.setArg(idx++, sizeof(kernelShape),kernelShape);
|
|
|
|
mBufferToImageKernel.setArg(idx++, static_cast<uint32_t>(heightWidthSumSize));
|
|
|
|
} else {
|
|
|
|
MNN_PRINT("convertToNC4HW4Buffer type not support!\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
mBufferToImageKernel.setArg(idx++, openCLBuffer(image));
|
|
|
|
|
|
|
|
const uint32_t maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mBufferToImageKernel));
|
|
|
|
const std::vector<uint32_t> lws = {16, std::max((uint32_t)1, maxWorkGroupSize / 16)};
|
|
|
|
|
|
|
|
cl::Event event;
|
|
|
|
cl_int res;
|
|
|
|
|
|
|
|
std::vector<uint32_t> roundUpGroupWorkSize(lws.size());
|
|
|
|
for (size_t i = 0; i < lws.size(); ++i) {
|
|
|
|
roundUpGroupWorkSize[i] = ROUND_UP(gws[i], lws[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
res = runtime->commandQueue().enqueueNDRangeKernel(mBufferToImageKernel, cl::NullRange,
|
|
|
|
cl::NDRange(roundUpGroupWorkSize[0], roundUpGroupWorkSize[1]),
|
|
|
|
cl::NDRange(lws[0], lws[1]), nullptr, &event);
|
|
|
|
MNN_CHECK_CL_SUCCESS(res, "convertToNC4HW4Buffer");
|
|
|
|
|
|
|
|
if (needWait) {
|
|
|
|
event.wait();
|
|
|
|
}
|
|
|
|
#ifdef LOG_VERBOSE
|
|
|
|
MNN_PRINT("end convertBufferToNC4HW4Buffer !\n");
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} // namespace OpenCL
|
|
|
|
} // namespace MNN
|
|
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|