MNN/source/shape/ShapeRange.cpp

71 lines
2.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeRange.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
2019-04-17 10:49:11 +08:00
#include "math.h"
namespace MNN {
template <typename T>
static int computeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
Tensor* start_in = inputs[0];
Tensor* limit_in = inputs[1];
Tensor* delta_in = inputs[2];
MNN_ASSERT((1 == start_in->buffer().dimensions) || (0 == start_in->buffer().dimensions));
MNN_ASSERT((1 == limit_in->buffer().dimensions) || (0 == limit_in->buffer().dimensions));
MNN_ASSERT((1 == delta_in->buffer().dimensions) || (0 == delta_in->buffer().dimensions));
const float start = (float)start_in->host<T>()[0];
const float limit = (float)limit_in->host<T>()[0];
const float delta = (float)delta_in->host<T>()[0];
2019-04-17 10:49:11 +08:00
MNN_ASSERT(0 != delta);
if (delta > 0) {
if (limit < start) {
return 0;
}
2019-04-17 10:49:11 +08:00
} else {
if (limit > start) {
return 0;
}
2019-04-17 10:49:11 +08:00
}
int32_t size = ceilf(fabsf((limit - start) / delta));
2019-04-17 10:49:11 +08:00
return (int)size;
}
class RangeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(inputs.size() == 3);
int output_size = 0;
2020-11-05 16:41:56 +08:00
switch (inputs[0]->getType().code) {
case halide_type_int:
2019-04-17 10:49:11 +08:00
output_size = computeSize<int32_t>(op, inputs, outputs);
outputs[0]->setType(MNN::DataType_DT_INT32);
break;
2020-11-05 16:41:56 +08:00
case halide_type_float:
2019-04-17 10:49:11 +08:00
output_size = computeSize<float>(op, inputs, outputs);
outputs[0]->setType(MNN::DataType_DT_FLOAT);
break;
default:
MNN_ASSERT(false); // unsupported type
}
outputs[0]->buffer().dimensions = 1;
outputs[0]->buffer().dim[0].extent = output_size;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = MNN_DATA_FORMAT_NHWC;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE_INPUTS(RangeComputer, OpType_Range, (std::vector<int>{0, 1, 2}));
2019-04-17 10:49:11 +08:00
} // namespace MNN