2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeRange.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "shape/SizeComputer.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
2019-04-17 10:49:11 +08:00
|
|
|
#include "math.h"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static int computeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
Tensor* start_in = inputs[0];
|
|
|
|
Tensor* limit_in = inputs[1];
|
|
|
|
Tensor* delta_in = inputs[2];
|
|
|
|
|
|
|
|
MNN_ASSERT((1 == start_in->buffer().dimensions) || (0 == start_in->buffer().dimensions));
|
|
|
|
MNN_ASSERT((1 == limit_in->buffer().dimensions) || (0 == limit_in->buffer().dimensions));
|
|
|
|
MNN_ASSERT((1 == delta_in->buffer().dimensions) || (0 == delta_in->buffer().dimensions));
|
|
|
|
|
2020-01-15 13:33:47 +08:00
|
|
|
const float start = (float)start_in->host<T>()[0];
|
|
|
|
const float limit = (float)limit_in->host<T>()[0];
|
|
|
|
const float delta = (float)delta_in->host<T>()[0];
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
MNN_ASSERT(0 != delta);
|
|
|
|
if (delta > 0) {
|
2021-01-06 17:20:12 +08:00
|
|
|
if (limit < start) {
|
|
|
|
return 0;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
} else {
|
2021-01-06 17:20:12 +08:00
|
|
|
if (limit > start) {
|
|
|
|
return 0;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
|
2020-01-15 13:33:47 +08:00
|
|
|
int32_t size = ceilf(fabsf((limit - start) / delta));
|
2019-04-17 10:49:11 +08:00
|
|
|
return (int)size;
|
|
|
|
}
|
|
|
|
|
|
|
|
class RangeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(inputs.size() == 3);
|
|
|
|
int output_size = 0;
|
2020-11-05 16:41:56 +08:00
|
|
|
switch (inputs[0]->getType().code) {
|
|
|
|
case halide_type_int:
|
2019-04-17 10:49:11 +08:00
|
|
|
output_size = computeSize<int32_t>(op, inputs, outputs);
|
|
|
|
outputs[0]->setType(MNN::DataType_DT_INT32);
|
|
|
|
break;
|
2020-11-05 16:41:56 +08:00
|
|
|
case halide_type_float:
|
2019-04-17 10:49:11 +08:00
|
|
|
output_size = computeSize<float>(op, inputs, outputs);
|
|
|
|
outputs[0]->setType(MNN::DataType_DT_FLOAT);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
MNN_ASSERT(false); // unsupported type
|
|
|
|
}
|
|
|
|
outputs[0]->buffer().dimensions = 1;
|
|
|
|
outputs[0]->buffer().dim[0].extent = output_size;
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = MNN_DATA_FORMAT_NHWC;
|
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2019-08-22 20:13:46 +08:00
|
|
|
REGISTER_SHAPE_INPUTS(RangeComputer, OpType_Range, (std::vector<int>{0, 1, 2}));
|
2019-04-17 10:49:11 +08:00
|
|
|
} // namespace MNN
|