mirror of https://github.com/alibaba/MNN.git
94 lines
3.1 KiB
C++
94 lines
3.1 KiB
C++
|
//
|
||
|
// CPUCast.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2018/08/05.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "CPUCast.hpp"
|
||
|
#include "Macro.h"
|
||
|
|
||
|
namespace MNN {
|
||
|
|
||
|
template <typename srcT, typename dstT>
|
||
|
class CastDataType : public Execution {
|
||
|
public:
|
||
|
CastDataType(Backend *b) : Execution(b) {
|
||
|
// nothing to do
|
||
|
}
|
||
|
virtual ~CastDataType() = default;
|
||
|
|
||
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
||
|
auto input = inputs[0];
|
||
|
auto output = outputs[0];
|
||
|
auto srcData = input->host<srcT>();
|
||
|
auto dstData = output->host<dstT>();
|
||
|
const auto inputDataSize = input->elementSize();
|
||
|
const auto outputDataSize = output->elementSize();
|
||
|
MNN_ASSERT(inputDataSize == outputDataSize);
|
||
|
for (int i = 0; i < inputDataSize; i++) {
|
||
|
dstData[i] = static_cast<dstT>(srcData[i]);
|
||
|
}
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class CopyExecution : public Execution {
|
||
|
public:
|
||
|
CopyExecution(Backend *b) : Execution(b) {
|
||
|
// nothing to do
|
||
|
}
|
||
|
virtual ~CopyExecution() = default;
|
||
|
|
||
|
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
|
||
|
auto input = inputs[0];
|
||
|
auto output = outputs[0];
|
||
|
auto srcData = input->host<char>();
|
||
|
auto dstData = output->host<char>();
|
||
|
const auto inputDataSize = input->size();
|
||
|
const auto outputDataSize = output->size();
|
||
|
if (inputDataSize != outputDataSize) {
|
||
|
return INPUT_DATA_ERROR;
|
||
|
}
|
||
|
::memcpy(dstData, srcData, inputDataSize);
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static DataType _mapDataType(DataType src) {
|
||
|
if (DataType_DT_BOOL == src) {
|
||
|
return DataType_DT_INT32;
|
||
|
}
|
||
|
return src;
|
||
|
}
|
||
|
Execution *CPUCastCreator::onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
||
|
const MNN::Op *op, Backend *backend) const {
|
||
|
auto cast = op->main_as_CastParam();
|
||
|
auto srcT = _mapDataType(cast->srcT());
|
||
|
auto dstT = _mapDataType(cast->dstT());
|
||
|
if (srcT == dstT) {
|
||
|
return new CopyExecution(backend);
|
||
|
}
|
||
|
if (dstT == MNN::DataType_DT_INT32 && srcT == MNN::DataType_DT_FLOAT) {
|
||
|
return new CastDataType<float, int>(backend);
|
||
|
}
|
||
|
if (dstT == MNN::DataType_DT_INT32 && srcT == MNN::DataType_DT_DOUBLE) {
|
||
|
return new CastDataType<double, int>(backend);
|
||
|
}
|
||
|
if (dstT == MNN::DataType_DT_FLOAT && srcT == MNN::DataType_DT_INT32) {
|
||
|
return new CastDataType<int, float>(backend);
|
||
|
}
|
||
|
if (dstT == MNN::DataType_DT_FLOAT && srcT == MNN::DataType_DT_UINT8) {
|
||
|
return new CastDataType<uint8_t, float>(backend);
|
||
|
}
|
||
|
if (dstT == MNN::DataType_DT_INT32 && srcT == MNN::DataType_DT_INT64) {
|
||
|
return new CastDataType<int64_t, int32_t>(backend);
|
||
|
}
|
||
|
MNN_PRINT("Don't support cast form %d to %d\n", cast->srcT(), cast->dstT());
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
REGISTER_CPU_OP_CREATOR(CPUCastCreator, OpType_Cast);
|
||
|
} // namespace MNN
|