MNN/source/backend/cpu/CPUReshape.cpp

88 lines
2.9 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUReshape.cpp
// MNN
//
// Created by MNN on 2018/07/18.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUReshape.hpp"
#include "CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
#include "TensorUtils.hpp"
namespace MNN {
2019-08-23 11:13:29 +08:00
CPUReshape::CPUReshape(Backend *b) : MNN::Execution(b), mStorage(2) {
2019-04-17 10:49:11 +08:00
// nothing to do
}
ErrorCode CPUReshape::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto input = inputs[0];
int totalSize = 1;
mWrapTensorForInput.buffer().type = inputs[0]->buffer().type;
mWrapTensorForOutput.buffer().type = inputs[0]->buffer().type;
2019-08-23 11:13:29 +08:00
if (TensorUtils::getDescribe(input)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
return NO_ERROR;
2019-04-17 10:49:11 +08:00
}
2019-08-23 11:13:29 +08:00
TensorUtils::getDescribe(&mWrapTensorForInput)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
TensorUtils::getDescribe(&mWrapTensorForOutput)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
2019-04-17 10:49:11 +08:00
for (int i = 0; i < input->buffer().dimensions; ++i) {
totalSize *= input->buffer().dim[i].extent;
}
2019-08-23 11:13:29 +08:00
TensorUtils::getDescribe(&mStorage)->dimensionFormat = MNN_DATA_FORMAT_NCHW;
2019-04-17 10:49:11 +08:00
mStorage.buffer().dim[0].extent = 1;
mStorage.buffer().dim[1].extent = totalSize;
mStorage.buffer().dimensions = 2;
mStorage.buffer().type = input->getType();
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
TensorUtils::copyShape(inputs[0], &mWrapTensorForInput);
mWrapTensorForInput.buffer().host = mStorage.buffer().host;
TensorUtils::setLinearLayout(&mWrapTensorForInput);
TensorUtils::copyShape(outputs[0], &mWrapTensorForOutput);
mWrapTensorForOutput.buffer().host = mStorage.buffer().host;
TensorUtils::setLinearLayout(&mWrapTensorForOutput);
return NO_ERROR;
}
ErrorCode CPUReshape::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
MNN_ASSERT(1 == outputs.size());
2019-08-23 11:13:29 +08:00
if (TensorUtils::getDescribe(inputs[0])->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
::memcpy(outputs[0]->host<float>(), inputs[0]->host<float>(), inputs[0]->size());
return NO_ERROR;
}
2019-04-17 10:49:11 +08:00
auto input = inputs[0];
auto output = outputs[0];
backend()->onCopyBuffer(input, &mWrapTensorForInput);
backend()->onCopyBuffer(&mWrapTensorForOutput, output);
return NO_ERROR;
}
class CPUReshapeCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
2019-08-23 11:13:29 +08:00
return new CPUReshape(backend);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUReshapeCreator, OpType_Reshape);
} // namespace MNN