MNN/source/backend/cpu/CPUBatchMatMul.cpp

81 lines
2.7 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUBatchMatMul.cpp
// MNN
//
// Created by MNN on 2019/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUBatchMatMul.hpp"
#include "CPUBackend.hpp"
#include "Matrix.hpp"
namespace MNN {
CPUBatchMatMul::CPUBatchMatMul(const Op* op, Backend* backend) : Execution(backend) {
// nothing to do
}
ErrorCode CPUBatchMatMul::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
const int dimensions = input0->dimensions();
int batch = 1;
for (int i = 0; i < dimensions - 2; ++i) {
batch *= input0->length(i);
}
mBatch = batch;
std::vector<int> dimSizes(2);
dimSizes[0] = input0->length(dimensions - 2);
dimSizes[1] = input0->length(dimensions - 1);
mMatrixA.reset(Tensor::createDevice<float>(dimSizes));
dimSizes[0] = input1->length(dimensions - 2);
dimSizes[1] = input1->length(dimensions - 1);
mMatrixB.reset(Tensor::createDevice<float>(dimSizes));
dimSizes[0] = output->length(dimensions - 2);
dimSizes[1] = output->length(dimensions - 1);
mMatrixC.reset(Tensor::createDevice<float>(dimSizes));
return NO_ERROR;
}
ErrorCode CPUBatchMatMul::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
const int dimensions = input0->dimensions();
MNN_ASSERT(dimensions >= 3);
const int input0Stride = input0->stride(dimensions - 3);
const int input1Stride = input1->stride(dimensions - 3);
const int outputStride = output->stride(dimensions - 3);
const auto input0Ptr = input0->host<float>();
const auto input1Ptr = input1->host<float>();
float* const outputPtr = output->host<float>();
for (int i = 0; i < mBatch; ++i) {
mMatrixA->buffer().host = reinterpret_cast<uint8_t*>(input0Ptr + i * input0Stride);
mMatrixB->buffer().host = reinterpret_cast<uint8_t*>(input1Ptr + i * input1Stride);
mMatrixC->buffer().host = reinterpret_cast<uint8_t*>(outputPtr + i * outputStride);
Math::Matrix::multi(mMatrixC.get(), mMatrixA.get(), mMatrixB.get());
}
return NO_ERROR;
}
class CPUBatchMatMulCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUBatchMatMul(op, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUBatchMatMulCreator, OpType_BatchMatMul);
} // namespace MNN