2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
|
// CPUGatherV2.cpp
|
|
|
|
|
// MNN
|
|
|
|
|
//
|
|
|
|
|
// Created by MNN on 2018/08/24.
|
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
#include "CPUGatherV2.hpp"
|
|
|
|
|
#include "CPUBackend.hpp"
|
|
|
|
|
#include "CommonOptFunction.h"
|
|
|
|
|
#include "Macro.h"
|
|
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
CPUGatherV2<T>::CPUGatherV2(Backend *b, const MNN::Op *op) : MNN::Execution(b), mOp(op) {
|
|
|
|
|
// nothing to do
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
ErrorCode CPUGatherV2<T>::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
|
return NO_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
ErrorCode CPUGatherV2<T>::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
|
auto params = inputs[0];
|
|
|
|
|
auto indices = inputs[1];
|
|
|
|
|
auto output = outputs[0];
|
|
|
|
|
int axis = 0;
|
|
|
|
|
if (inputs.size() == 3) {
|
|
|
|
|
const Tensor *axisTensor = inputs[2];
|
|
|
|
|
axis = axisTensor->host<int32_t>()[0];
|
|
|
|
|
}
|
|
|
|
|
MNN_ASSERT(axis > -params->buffer().dimensions && axis < params->buffer().dimensions);
|
|
|
|
|
|
|
|
|
|
if (axis < 0) {
|
|
|
|
|
axis = params->buffer().dimensions + axis;
|
|
|
|
|
}
|
|
|
|
|
const int gatherDimSize = params->buffer().dim[axis].extent;
|
|
|
|
|
const int N = indices->elementSize();
|
|
|
|
|
MNN_ASSERT(gatherDimSize <= std::numeric_limits<int32_t>::max());
|
|
|
|
|
|
|
|
|
|
// TODO : CURRUNT ONLY SUPPORT AXIS == 0
|
|
|
|
|
MNN_ASSERT(0 == axis);
|
|
|
|
|
const int limit = params->length(0);
|
|
|
|
|
const int firstDimStride = params->buffer().dim[0].stride;
|
|
|
|
|
const int *indicesPtr = indices->host<int32_t>();
|
|
|
|
|
const auto inputPtr = params->host<T>();
|
|
|
|
|
auto outputPtr = output->host<T>();
|
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
|
|
|
if (indicesPtr[i] < 0 || indicesPtr[i] > limit) {
|
|
|
|
|
return INPUT_DATA_ERROR;
|
|
|
|
|
}
|
|
|
|
|
memcpy(outputPtr + i * firstDimStride, inputPtr + firstDimStride * indicesPtr[i], sizeof(T) * firstDimStride);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
class CPUGatherV2Creator : public CPUBackend::Creator {
|
|
|
|
|
public:
|
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
|
const MNN::Op *op, Backend *backend) const override {
|
2019-07-02 18:01:08 +08:00
|
|
|
switch (inputs[0]->getType().code) {
|
|
|
|
|
case halide_type_int:
|
2019-04-17 10:49:11 +08:00
|
|
|
return new CPUGatherV2<int32_t>(backend, op);
|
2019-07-02 18:01:08 +08:00
|
|
|
case halide_type_float:
|
2019-04-17 10:49:11 +08:00
|
|
|
return new CPUGatherV2<float>(backend, op);
|
|
|
|
|
default:
|
|
|
|
|
MNN_ASSERT(false); // unsupported type
|
|
|
|
|
return nullptr;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUGatherV2Creator, OpType_GatherV2);
|
|
|
|
|
|
|
|
|
|
} // namespace MNN
|