MNN/source/backend/cpu/CPUPool.cpp

564 lines
24 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUPool.cpp
// MNN
//
// Created by MNN on 2018/07/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUPool.hpp"
#include <float.h>
#include <math.h>
#include "Macro.h"
#ifdef MNN_USE_NEON
#include <arm_neon.h>
#endif
#include "Concurrency.h"
#include "Vec4.hpp"
using Vec4 = MNN::Math::Vec4;
2019-04-17 10:49:11 +08:00
static void pooling_max_pad(const float *channelInput, float *offsetOutput, int inputWidth, int inputHeight,
int inputStep4, int inputSize4, int kernelWidth, int kernelHeight, int iw, int ih) {
#ifdef MNN_USE_NEON
float32x4_t max = vdupq_n_f32(-FLT_MAX);
#else
float max0 = -FLT_MAX;
float max1 = -FLT_MAX;
float max2 = -FLT_MAX;
float max3 = -FLT_MAX;
#endif
const float *bottomLine = channelInput + inputSize4 - inputStep4;
for (int kh = 0; kh < kernelHeight; kh++) {
const int h = ih + kh;
const float *paddedLineInput = nullptr;
if (h < 0) { // top replicate
paddedLineInput = channelInput;
} else if (h >= inputHeight) { // bottom replicate
paddedLineInput = bottomLine;
} else {
paddedLineInput = channelInput + h * inputStep4;
}
const float *rightEdge = paddedLineInput + inputStep4 - 4;
for (int kw = 0; kw < kernelWidth; kw++) {
const int w = iw + kw;
const float *cursorInput = nullptr;
if (w < 0) { // left replicate
cursorInput = paddedLineInput;
} else if (w >= inputWidth) { // right replicate
cursorInput = rightEdge;
} else {
cursorInput = paddedLineInput + 4 * w;
}
#ifdef MNN_USE_NEON
max = vmaxq_f32(max, vld1q_f32(cursorInput));
#else
max0 = std::max(max0, cursorInput[0]);
max1 = std::max(max1, cursorInput[1]);
max2 = std::max(max2, cursorInput[2]);
max3 = std::max(max3, cursorInput[3]);
#endif
}
}
#ifdef MNN_USE_NEON
vst1q_f32(offsetOutput, max);
#else
offsetOutput[0] = max0;
offsetOutput[1] = max1;
offsetOutput[2] = max2;
offsetOutput[3] = max3;
#endif
}
static void poolingMax(const float *channelInput, int inputWidth, int inputHeight, float *channelOutput,
2019-04-17 10:49:11 +08:00
int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth,
int strideHeight, int padWidth, int padHeight, MNN::PoolPadType padType) {
2019-04-17 10:49:11 +08:00
int padTop = padHeight <= 0 ? 0 : (padHeight + strideHeight - 1) / strideHeight;
int padBottom = (padHeight + inputHeight - kernelHeight) / strideHeight + 1;
int padLeft = padWidth <= 0 ? 0 : (padWidth + strideWidth - 1) / strideWidth;
int padRight = (padWidth + inputWidth - kernelWidth) / strideWidth + 1;
const int inputStep4 = 4 * inputWidth;
const int inputSize4 = inputStep4 * inputHeight;
const int strideInputStep4 = strideHeight * inputStep4;
const int outputStep4 = 4 * outputWidth;
const int strideWidth4 = 4 * strideWidth;
{ // handle paddings top
float *lineOutput = channelOutput;
for (int oh = 0, ih = -padHeight; oh < padTop; oh++, ih += strideHeight, lineOutput += outputStep4) {
float *offsetOutput = lineOutput;
for (int ow = 0, iw = -padWidth; ow < outputWidth; ow++, iw += strideWidth, offsetOutput += 4) {
pooling_max_pad(channelInput, offsetOutput, inputWidth, inputHeight, inputStep4, inputSize4,
kernelWidth, kernelHeight, iw, ih);
2019-04-17 10:49:11 +08:00
}
}
for (int oh = padTop, ih = -padHeight + oh * strideHeight; oh < padBottom;
oh++, ih += strideHeight, lineOutput += outputStep4) {
float *offsetOutput = lineOutput;
for (int ow = 0, iw = -padWidth; ow < padLeft; ow++, iw += strideWidth, offsetOutput += 4) {
pooling_max_pad(channelInput, offsetOutput, inputWidth, inputHeight, inputStep4, inputSize4,
kernelWidth, kernelHeight, iw, ih);
2019-04-17 10:49:11 +08:00
}
offsetOutput = lineOutput + padRight * 4;
for (int ow = padRight, iw = -padWidth + ow * strideWidth; ow < outputWidth;
ow++, iw += strideWidth, offsetOutput += 4) {
pooling_max_pad(channelInput, offsetOutput, inputWidth, inputHeight, inputStep4, inputSize4,
kernelWidth, kernelHeight, iw, ih);
2019-04-17 10:49:11 +08:00
}
}
for (int oh = padBottom, ih = -padHeight + oh * strideHeight; oh < outputHeight;
oh++, ih += strideHeight, lineOutput += outputStep4) {
float *offsetOutput = lineOutput;
for (int ow = 0, iw = -padWidth; ow < outputWidth; ow++, iw += strideWidth, offsetOutput += 4) {
pooling_max_pad(channelInput, offsetOutput, inputWidth, inputHeight, inputStep4, inputSize4,
kernelWidth, kernelHeight, iw, ih);
}
}
}
2019-04-17 10:49:11 +08:00
{ // handle no paddings
const float *lineInput =
channelInput + (padTop * strideHeight - padHeight) * inputStep4 + (padLeft * strideWidth - padWidth) * 4;
float *lineOutput = channelOutput + padTop * outputStep4 + padLeft * 4;
2019-04-17 10:49:11 +08:00
for (int oh = padTop, ih = -padHeight + oh * strideHeight; oh < padBottom;
oh++, ih += strideHeight, lineOutput += outputStep4, lineInput += strideInputStep4) {
const float *offsetInput = lineInput;
float *offsetOutput = lineOutput;
for (int ow = padLeft, iw = -padWidth + ow * strideWidth; ow < padRight;
ow++, iw += strideWidth, offsetOutput += 4, offsetInput += strideWidth4) {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
float32x4_t max = vdupq_n_f32(-FLT_MAX);
2019-04-17 10:49:11 +08:00
#else
float max0 = -FLT_MAX;
float max1 = -FLT_MAX;
float max2 = -FLT_MAX;
float max3 = -FLT_MAX;
2019-04-17 10:49:11 +08:00
#endif
const float *kernelInput = offsetInput;
for (int kh = 0; kh < kernelHeight; kh++, kernelInput += inputStep4) {
const float *cursorInput = kernelInput;
for (int kw = 0; kw < kernelWidth; kw++, cursorInput += 4) {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
max = vmaxq_f32(max, vld1q_f32(cursorInput));
2019-04-17 10:49:11 +08:00
#else
max0 = std::max(max0, cursorInput[0]);
max1 = std::max(max1, cursorInput[1]);
max2 = std::max(max2, cursorInput[2]);
max3 = std::max(max3, cursorInput[3]);
2019-04-17 10:49:11 +08:00
#endif
}
}
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
vst1q_f32(offsetOutput, max);
2019-04-17 10:49:11 +08:00
#else
offsetOutput[0] = max0;
offsetOutput[1] = max1;
offsetOutput[2] = max2;
offsetOutput[3] = max3;
2019-04-17 10:49:11 +08:00
#endif
}
}
}
}
static void poolingAvgPad(const float *offsetInput, float *offsetOutput, int inputWidth, int inputHeight,
int kernelWidth, int kernelHeight, int inputStep4, int iw, int ih, int padWidth,
int padHeight, MNN::PoolPadType padType) {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
float32x4_t sum = vdupq_n_f32(0);
#else
float sum0 = 0;
float sum1 = 0;
float sum2 = 0;
float sum3 = 0;
#endif
const int khs = 0 < -ih ? -ih : 0; // max
const int khe = kernelHeight < inputHeight - ih ? kernelHeight : inputHeight - ih; // min
const int kws = 0 < -iw ? -iw : 0; // max
const int kwe = kernelWidth < inputWidth - iw ? kernelWidth : inputWidth - iw; // min
2019-04-17 10:49:11 +08:00
// sum
int count = 0;
if (padType == MNN::PoolPadType_CAFFE) {
count = (ALIMIN(ih + kernelHeight, inputHeight + padHeight) - ih) *
(ALIMIN(iw + kernelWidth, inputWidth + padWidth) - iw);
} else {
count = (khe - khs) * (kwe - kws);
}
2019-04-17 10:49:11 +08:00
const float *kernelInput = offsetInput + khs * inputStep4;
for (int kh = khs; kh < khe; kh++, kernelInput += inputStep4) {
const float *cursorInput = kernelInput + kws * 4;
for (int kw = kws; kw < kwe; kw++, cursorInput += 4) {
#ifdef MNN_USE_NEON
sum += vld1q_f32(cursorInput);
#else
sum0 += cursorInput[0];
sum1 += cursorInput[1];
sum2 += cursorInput[2];
sum3 += cursorInput[3];
#endif
}
}
// avg
if (count > 0) {
#ifdef MNN_USE_NEON
vst1q_f32(offsetOutput, sum / vdupq_n_f32(count));
#else
offsetOutput[0] = sum0 / (float)count;
offsetOutput[1] = sum1 / (float)count;
offsetOutput[2] = sum2 / (float)count;
offsetOutput[3] = sum3 / (float)count;
#endif
} else {
#ifdef MNN_USE_NEON
vst1q_f32(offsetOutput, vdupq_n_f32(0));
#else
offsetOutput[0] = 0;
offsetOutput[1] = 0;
offsetOutput[2] = 0;
offsetOutput[3] = 0;
#endif
}
}
static void poolingAvg(const float *channelInput, int inputWidth, int inputHeight, float *channelOutput,
2019-04-17 10:49:11 +08:00
int outputWidth, int outputHeight, int kernelWidth, int kernelHeight, int strideWidth,
int strideHeight, int padWidth, int padHeight, MNN::PoolPadType padType) {
2019-04-17 10:49:11 +08:00
int padTop = padHeight <= 0 ? 0 : (padHeight + strideHeight - 1) / strideHeight;
int padBottom = (padHeight + inputHeight - kernelHeight) / strideHeight + 1;
int padLeft = padWidth <= 0 ? 0 : (padWidth + strideWidth - 1) / strideWidth;
int padRight = (padWidth + inputWidth - kernelWidth) / strideWidth + 1;
const int inputStep4 = 4 * inputWidth;
const int strideInputStep4 = strideHeight * inputStep4;
const int outputStep4 = 4 * outputWidth;
const int strideWidth4 = 4 * strideWidth;
{ // handle paddings
const float *lineInput = channelInput - padHeight * inputStep4 - padWidth * 4;
float *lineOutput = channelOutput;
for (int oh = 0, ih = -padHeight; oh < padTop;
oh++, ih += strideHeight, lineOutput += outputStep4, lineInput += strideInputStep4) {
const float *offsetInput = lineInput;
float *offsetOutput = lineOutput;
for (int ow = 0, iw = -padWidth; ow < outputWidth;
ow++, iw += strideWidth, offsetOutput += 4, offsetInput += strideWidth4) {
poolingAvgPad(offsetInput, offsetOutput, inputWidth, inputHeight, kernelWidth, kernelHeight, inputStep4,
iw, ih, padWidth, padHeight, padType);
2019-04-17 10:49:11 +08:00
}
}
for (int oh = padTop, ih = -padHeight + oh * strideHeight; oh < padBottom;
oh++, ih += strideHeight, lineOutput += outputStep4, lineInput += strideInputStep4) {
const float *offsetInput = lineInput;
float *offsetOutput = lineOutput;
for (int ow = 0, iw = -padWidth; ow < padLeft;
ow++, iw += strideWidth, offsetOutput += 4, offsetInput += strideWidth4) {
poolingAvgPad(offsetInput, offsetOutput, inputWidth, inputHeight, kernelWidth, kernelHeight, inputStep4,
iw, ih, padWidth, padHeight, padType);
2019-04-17 10:49:11 +08:00
}
offsetInput = lineInput + padRight * strideWidth * 4;
offsetOutput = lineOutput + padRight * 4;
for (int ow = padRight, iw = -padWidth + ow * strideWidth; ow < outputWidth;
ow++, iw += strideWidth, offsetOutput += 4, offsetInput += strideWidth4) {
poolingAvgPad(offsetInput, offsetOutput, inputWidth, inputHeight, kernelWidth, kernelHeight, inputStep4,
iw, ih, padWidth, padHeight, padType);
}
}
for (int oh = padBottom, ih = -padHeight + oh * strideHeight; oh < outputHeight;
oh++, ih += strideHeight, lineOutput += outputStep4, lineInput += strideInputStep4) {
const float *offsetInput = lineInput;
float *offsetOutput = lineOutput;
for (int ow = 0, iw = -padWidth; ow < outputWidth;
ow++, iw += strideWidth, offsetOutput += 4, offsetInput += strideWidth4) {
poolingAvgPad(offsetInput, offsetOutput, inputWidth, inputHeight, kernelWidth, kernelHeight, inputStep4,
iw, ih, padWidth, padHeight, padType);
2019-04-17 10:49:11 +08:00
}
}
}
2019-04-17 10:49:11 +08:00
{ // handle no paddings
const float *lineInput =
channelInput + (padTop * strideHeight - padHeight) * inputStep4 + (padLeft * strideWidth - padWidth) * 4;
float *lineOutput = channelOutput + padTop * outputStep4 + padLeft * 4;
2019-04-17 10:49:11 +08:00
for (int oh = padTop, ih = -padHeight + oh * strideHeight; oh < padBottom;
oh++, ih += strideHeight, lineOutput += outputStep4, lineInput += strideInputStep4) {
const float *offsetInput = lineInput;
float *offsetOutput = lineOutput;
for (int ow = padLeft, iw = -padWidth + ow * strideWidth; ow < padRight;
ow++, iw += strideWidth, offsetOutput += 4, offsetInput += strideWidth4) {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
float32x4_t sum = vdupq_n_f32(0);
2019-04-17 10:49:11 +08:00
#else
float sum0 = 0;
float sum1 = 0;
float sum2 = 0;
float sum3 = 0;
2019-04-17 10:49:11 +08:00
#endif
// sum
int count = 0;
const float *kernelInput = offsetInput;
for (int kh = 0; kh < kernelHeight; kh++, kernelInput += inputStep4) {
const float *cursorInput = kernelInput;
for (int kw = 0; kw < kernelWidth; kw++, cursorInput += 4) {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
sum += vld1q_f32(cursorInput);
2019-04-17 10:49:11 +08:00
#else
sum0 += cursorInput[0];
sum1 += cursorInput[1];
sum2 += cursorInput[2];
sum3 += cursorInput[3];
2019-04-17 10:49:11 +08:00
#endif
count++;
2019-04-17 10:49:11 +08:00
}
}
2019-04-17 10:49:11 +08:00
// avg
if (count > 0) {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
vst1q_f32(offsetOutput, sum / vdupq_n_f32(count));
2019-04-17 10:49:11 +08:00
#else
offsetOutput[0] = sum0 / (float)count;
offsetOutput[1] = sum1 / (float)count;
offsetOutput[2] = sum2 / (float)count;
offsetOutput[3] = sum3 / (float)count;
2019-04-17 10:49:11 +08:00
#endif
} else {
2019-04-17 10:49:11 +08:00
#ifdef MNN_USE_NEON
vst1q_f32(offsetOutput, vdupq_n_f32(0));
2019-04-17 10:49:11 +08:00
#else
offsetOutput[0] = 0;
offsetOutput[1] = 0;
offsetOutput[2] = 0;
offsetOutput[3] = 0;
2019-04-17 10:49:11 +08:00
#endif
}
}
}
}
}
namespace MNN {
CPUPool::CPUPool(Backend *b, const Pool *parameter) : MNN::Execution(b), mParameter(parameter) {
// nothing to do
}
ErrorCode CPUPool::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto layer = mParameter;
int strideWidth = layer->strideX();
int strideHeight = layer->strideY();
int padWidth = layer->padX();
int padHeight = layer->padY();
// edit const if global
auto input = inputs[0];
auto output = outputs[0];
int kernelWidth = std::min(layer->kernelX(), input->width());
int kernelHeight = std::min(layer->kernelY(), input->height());
if (layer->isGlobal()) {
kernelWidth = input->width();
kernelHeight = input->height();
strideWidth = input->width();
strideHeight = input->height();
padWidth = 0;
padHeight = 0;
}
if (layer->padType() == PoolPadType_SAME) {
int padNeededWidth = (output->width() - 1) * strideWidth + kernelWidth - input->width();
int padNeededHeight = (output->height() - 1) * strideHeight + kernelHeight - input->height();
padWidth = padNeededWidth > 0 ? padNeededWidth / 2 : 0;
padHeight = padNeededHeight > 0 ? padNeededHeight / 2 : 0;
} else if (layer->padType() == PoolPadType_VALID) {
padWidth = padHeight = 0;
}
auto poolType = layer->type();
auto planeFunction = poolingMax;
if (poolType == PoolType_AVEPOOL) {
planeFunction = poolingAvg;
}
auto totalDepth = input->batch() * UP_DIV(input->channel(), 4);
auto inputData = input->host<float>();
auto outputData = output->host<float>();
auto inputPlaneStride = 4 * input->width() * input->height();
auto outputPlaneStride = 4 * output->width() * output->height();
int threadNumber = ((CPUBackend *)backend())->threadNumber();
auto padType = layer->padType();
2019-07-03 16:47:16 +08:00
mFunction = std::make_pair(threadNumber, [=](int tId) {
for (int channel = (int)tId; channel < totalDepth; channel += threadNumber) {
// run
planeFunction(inputData + channel * inputPlaneStride, input->width(), input->height(),
outputData + outputPlaneStride * channel, output->width(), output->height(), kernelWidth,
kernelHeight, strideWidth, strideHeight, padWidth, padHeight, padType);
2019-04-17 10:49:11 +08:00
}
2019-07-03 16:47:16 +08:00
});
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
ErrorCode CPUPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2019-07-03 16:47:16 +08:00
MNN_CONCURRENCY_BEGIN(tId, mFunction.first) {
mFunction.second((int)tId);
2019-07-03 16:47:16 +08:00
}
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
class CPUPoolCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUPool(backend, op->main_as_Pool());
}
};
REGISTER_CPU_OP_CREATOR(CPUPoolCreator, OpType_Pooling);
CPUPool3D::CPUPool3D(Backend *b, const Pool3D *param) : MNN::Execution(b) {
for (auto kernel: *param->kernels()) {
mKernels.push_back(kernel);
}
for (auto stride: *param->strides()) {
mStrides.push_back(stride);
}
for (auto pad: *param->pads()) {
mPads.push_back(pad);
}
mType = param->type();
mPadType = param->padType();
}
ErrorCode CPUPool3D::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
for (unsigned int i = 0; i < output->dimensions() - 2; ++i) {
if (mPadType == PoolPadType_CAFFE) { // Explicitly padding value will be provided for caffe
break;
} else if (mPadType == PoolPadType_VALID) { // padding value is always 0 for tf valid mode
mPads.push_back(0);
}
const int inputLength = input->length(i + 2), outputLength = output->length(i + 2);
const int inputLengthNeed = (outputLength - 1) * mStrides[i] + mKernels[i];
mPads.push_back((inputLengthNeed - inputLength) / 2);
}
if (mKernels[0] != 1 || mStrides[0] != 1) {
const int batch = input->length(0), channel = input->length(1), inputDepth = input->length(2);
const int outputHeight = output->length(3), outputWidth = output->length(4);
mTempStorage.reset(Tensor::createDevice<float>({batch, channel, inputDepth, outputHeight, outputWidth}, Tensor::CAFFE_C4));
backend()->onAcquireBuffer(mTempStorage.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mTempStorage.get(), Backend::DYNAMIC);
}
return NO_ERROR;
}
ErrorCode CPUPool3D::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
MNN_ASSERT(input->dimensions() == 5);
const int kernelDepth = mKernels[0], kernelHeight = mKernels[1], kernelWidth = mKernels[2];
const int strideDepth = mStrides[0], strideHeight = mStrides[1], strideWidth = mStrides[2];
const int outputDepth = output->length(2), outputHeight = output->length(3), outputWidth = output->length(4);
const int inputDepth = input->length(2), inputHeight = input->length(3), inputWidth = input->length(4);
const int channel = input->length(1), batch = input->length(0);
const int padDepth = mPads[0], padHeight = mPads[1], padWidth = mPads[2];
const int threadNumber = ((CPUBackend*)backend())->threadNumber();
{
auto planeFunction = poolingMax;
if (mType == PoolType_AVEPOOL) {
planeFunction = poolingAvg;
}
auto srcData = input->host<float>();
auto dstData = mTempStorage.get() != nullptr ? mTempStorage->host<float>() : output->host<float>();
auto inputPlaneStride = 4 * inputHeight * inputWidth;
auto outputPlaneStride = 4 * outputHeight * outputWidth;
auto padType = mPadType;
auto planeFunc = [=](int tId) {
for (int o = tId; o < batch * UP_DIV(channel, 4) * inputDepth; o += threadNumber) {
planeFunction(srcData + o * inputPlaneStride, inputWidth, inputHeight,
dstData + o * outputPlaneStride, outputWidth, outputHeight, kernelWidth,
kernelHeight, strideWidth, strideHeight, padWidth, padHeight, padType);
}
};
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
planeFunc((int)tId);
}
MNN_CONCURRENCY_END();
}
if (mTempStorage.get() != nullptr) {
using InnerFuncType = std::function<void(float*, const float*, int, int)>;
InnerFuncType innerFunc = [=](float* dst, const float* src, int step, int kernel) {
Vec4 max = Vec4::load(src);
for (int i = 1; i < kernel; ++i) {
max = Vec4::max(max, Vec4::load(src + i * step));
}
Vec4::save(dst, max);
};
if (mType == PoolType_AVEPOOL) {
innerFunc = [=](float* dst, const float* src, int step, int kernel) {
Vec4 sum = Vec4::load(src);
for (int i = 1; i < kernel; ++i) {
sum = sum + Vec4::load(src + i * step);
}
Vec4::save(dst, sum * ((float)1 / kernel));
};
}
const float* srcData = mTempStorage->host<float>();
float* dstData = output->host<float>();
auto reduceDepthFunc = [=, &innerFunc](int tId) {
const int outputPlaneStride = outputHeight * outputWidth * 4;
for (int o = tId; o < batch * UP_DIV(channel, 4); o += threadNumber) {
auto srcZData = srcData + o * inputDepth * outputPlaneStride;
auto dstZData = dstData + o * outputDepth * outputPlaneStride;
for (int i = 0; i < outputHeight * outputWidth; ++i) {
for (int d = 0; d < outputDepth; ++d) {
int dSrc = ALIMAX(d * strideDepth - padDepth, 0);
int kernel = ALIMIN(dSrc + kernelDepth, inputDepth) - dSrc;
if (kernel == 0) {
Vec4::save(dstZData + d * outputPlaneStride + i * 4, Vec4((float)0));
continue;
}
innerFunc(dstZData + d * outputPlaneStride + i * 4, srcZData + dSrc * outputPlaneStride + i * 4,
outputPlaneStride, kernel);
}
}
}
};
MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
reduceDepthFunc((int)tId);
}
MNN_CONCURRENCY_END();
}
return NO_ERROR;
}
class CPUPool3DCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUPool3D(backend, op->main_as_Pool3D());
}
};
REGISTER_CPU_OP_CREATOR(CPUPool3DCreator, OpType_Pooling3D);
2019-04-17 10:49:11 +08:00
} // namespace MNN