MNN/source/shape/ShapeQuantizedMaxPool.cpp

71 lines
2.7 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeQuantizedMaxPool.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class QuantizedMaxPoolComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer = op->main_as_QuantizedMaxPool();
MNN_ASSERT(layer->strideX() == layer->strideY());
int kernel_width = layer->kernelX();
int kernel_height = layer->kernelY();
int output_width = 1;
int output_height = 1;
auto input = inputs[0];
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
output_width = ceil((float)input->width() / (float)layer->strideX()); // NHWC for tensorflow
output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
2019-04-17 10:49:11 +08:00
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
2019-04-17 10:49:11 +08:00
} else {
MNN_ASSERT(false); // unsupported type
}
if (output_width <= 0 || output_height <= 0) {
return false;
}
// outputNHWC MNN: nchw
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
outputBuffer.dim[1].extent = output_height;
outputBuffer.dim[2].extent = output_width;
outputBuffer.dim[3].extent = input->buffer().dim[3].extent;
if (3 == inputs.size()) {
auto output_min = outputs[1]->buffer();
output_min.dimensions = 0;
output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
1;
auto output_max = outputs[2]->buffer();
output_max.dimensions = 0;
output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
1;
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(QuantizedMaxPoolComputer, OpType_QuantizedMaxPool);
} // namespace MNN