2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
|
// ShapeQuantizedReshape.cpp
|
|
|
|
|
// MNN
|
|
|
|
|
//
|
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
#include "Macro.h"
|
|
|
|
|
#include "SizeComputer.hpp"
|
|
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
class QuantizedReshapeComputer : public SizeComputer {
|
|
|
|
|
public:
|
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
|
auto layer_param = op->main_as_QuantizedReshape();
|
|
|
|
|
|
|
|
|
|
auto input = inputs[0];
|
|
|
|
|
auto output = outputs[0];
|
|
|
|
|
|
|
|
|
|
const int32_t* dim_data = nullptr;
|
|
|
|
|
int32_t dimSize = 0;
|
|
|
|
|
bool istflite = (layer_param->modelFormat() == ModeFormat_TFLITE);
|
|
|
|
|
if (true == istflite) {
|
|
|
|
|
dimSize = layer_param->dims()->size();
|
|
|
|
|
dim_data = layer_param->dims()->data();
|
|
|
|
|
} else {
|
|
|
|
|
MNN_ASSERT(1 == inputs[1]->buffer().dimensions);
|
|
|
|
|
auto shape = inputs[1];
|
|
|
|
|
dimSize = shape->buffer().dim[0].extent;
|
|
|
|
|
dim_data = shape->host<int32_t>();
|
|
|
|
|
auto output_min = outputs[1]->buffer();
|
|
|
|
|
auto output_max = outputs[2]->buffer();
|
|
|
|
|
|
|
|
|
|
output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
|
|
|
|
|
1;
|
|
|
|
|
output_min.dimensions = 0;
|
|
|
|
|
output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
|
|
|
|
|
1;
|
|
|
|
|
output_max.dimensions = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int num_element = 1;
|
|
|
|
|
for (int i = 0; i < input->buffer().dimensions; i++) {
|
|
|
|
|
num_element *= input->buffer().dim[i].extent;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output->buffer().dimensions = dimSize;
|
|
|
|
|
|
|
|
|
|
int count_non_minus1 = 1;
|
|
|
|
|
for (int i = 0; i < dimSize; i++) {
|
|
|
|
|
if (dim_data[i] != -1) {
|
|
|
|
|
count_non_minus1 *= dim_data[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MNN_ASSERT((num_element % count_non_minus1) == 0)
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < dimSize; i++) {
|
|
|
|
|
int shape_dim = dim_data[i];
|
|
|
|
|
if (shape_dim == -1) {
|
|
|
|
|
shape_dim = num_element / count_non_minus1;
|
|
|
|
|
}
|
|
|
|
|
output->buffer().dim[i].extent = shape_dim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output->setType(DataType_DT_UINT8);
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
REGISTER_SHAPE(QuantizedReshapeComputer, OpType_QuantizedReshape);
|
|
|
|
|
} // namespace MNN
|