2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeShape.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "Macro.h"
|
|
|
|
#include "SizeComputer.hpp"
|
|
|
|
#include "TensorUtils.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
class ShapeSizeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(1 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
for (int i = 0; i < ib.dimensions; i++) {
|
|
|
|
if (ib.dim[i].extent <= 0) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ob.dimensions = 1;
|
|
|
|
outputs[0]->setType(DataType_DT_INT32);
|
2019-09-01 19:25:26 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = op->defaultDimentionFormat();
|
2019-07-19 17:09:09 +08:00
|
|
|
if (TensorUtils::getDescribe(inputs[0])->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
|
|
ob.dim[0].extent = 4;
|
|
|
|
} else {
|
|
|
|
ob.dim[0].extent = ib.dimensions;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(ShapeSizeComputer, OpType_Shape);
|
|
|
|
} // namespace MNN
|