| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUEltwise.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2018/07/19.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUEltwise.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | #include <math.h>
 | 
					
						
							|  |  |  | #include <string.h>
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/Concurrency.h"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | #include <algorithm>
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							|  |  |  | #include "backend/cpu/compute/CommonOptFunction.h"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | CPUEltwise::CPUEltwise(Backend *b, EltwiseType type, std::vector<float> coef) : Execution(b) { | 
					
						
							|  |  |  |     mType = type; | 
					
						
							|  |  |  |     mCoeff = coef; | 
					
						
							| 
									
										
										
										
											2019-05-17 14:59:57 +08:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | ErrorCode CPUEltwise::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							|  |  |  |     auto inputTensor = inputs[0]; | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |     const int size   = static_cast<CPUBackend*>(backend())->getTensorSize(inputTensor); | 
					
						
							|  |  |  |     auto core = static_cast<CPUBackend*>(backend())->functions(); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-17 14:59:57 +08:00
										 |  |  |     auto outputTensor    = outputs[0]; | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |     auto outputHost      = outputTensor->host<uint8_t>(); | 
					
						
							|  |  |  |     const auto input0Ptr = inputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  |     const auto input1Ptr = inputs[1]->host<uint8_t>(); | 
					
						
							| 
									
										
										
										
											2019-05-17 14:59:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-06-17 20:10:35 +08:00
										 |  |  |     auto coeffSize = mCoeff.size(); | 
					
						
							| 
									
										
										
										
											2019-05-17 14:59:57 +08:00
										 |  |  |     bool isIdentity     = coeffSize >= 2; | 
					
						
							|  |  |  |     if (isIdentity) { | 
					
						
							|  |  |  |         // when Eltwise has coeff
 | 
					
						
							|  |  |  |         if (mCoeff[0] == 1.0f && mCoeff[1] == 0.0f) { | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |             memcpy(outputHost, input0Ptr, size * core->bytes); | 
					
						
							| 
									
										
										
										
											2019-05-17 14:59:57 +08:00
										 |  |  |             return NO_ERROR; | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             return NOT_SUPPORT; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |     int opType = -1; | 
					
						
							| 
									
										
										
										
											2019-05-17 14:59:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     switch (mType) { | 
					
						
							|  |  |  |         case EltwiseType_PROD: | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |             opType = BinaryOpOperation_MUL; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             break; | 
					
						
							|  |  |  |         case EltwiseType_SUM: | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |             opType = BinaryOpOperation_ADD; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             break; | 
					
						
							|  |  |  |         case EltwiseType_MAXIMUM: | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |             opType = BinaryOpOperation_MAXIMUM; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             break; | 
					
						
							| 
									
										
										
										
											2019-06-17 20:10:35 +08:00
										 |  |  |         case EltwiseType_SUB: | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |             opType = BinaryOpOperation_SUB; | 
					
						
							| 
									
										
										
										
											2019-06-17 20:10:35 +08:00
										 |  |  |             break; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |         default: | 
					
						
							|  |  |  |             MNN_ERROR("Don't support %d type for eltwise", mType); | 
					
						
							|  |  |  |             return INPUT_DATA_ERROR; | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |     auto proc = core->MNNSelectBinaryFunctionForFloat(opType); | 
					
						
							| 
									
										
										
										
											2020-02-26 09:57:17 +08:00
										 |  |  |     auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size); | 
					
						
							|  |  |  |     int sizeDivide = schedule.first; | 
					
						
							|  |  |  |     int scheduleNumber = schedule.second; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |     MNN_CONCURRENCY_BEGIN(tId, scheduleNumber) { | 
					
						
							|  |  |  |         int start = sizeDivide * (int)tId; | 
					
						
							|  |  |  |         int realSize = sizeDivide; | 
					
						
							|  |  |  |         if (tId == scheduleNumber -1 ) { | 
					
						
							|  |  |  |             realSize = size - start; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         if (realSize > 0) { | 
					
						
							|  |  |  |             auto inputT1 = inputs[1]; | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |             auto inp0 = input0Ptr + start * core->bytes; | 
					
						
							|  |  |  |             auto inp1 = input1Ptr + start * core->bytes; | 
					
						
							|  |  |  |             auto out = outputHost + start * core->bytes; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             proc(out, inp0, inp1, realSize, -1); | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |             for (int i = 2; i < inputs.size(); ++i) { | 
					
						
							| 
									
										
										
										
											2021-06-11 17:17:13 +08:00
										 |  |  |                 proc(out, out, inputs[i]->host<uint8_t>() + start * core->bytes, realSize, -1); | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     MNN_CONCURRENCY_END(); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-03-17 18:20:21 +08:00
										 |  |  | class CPUEltwiseCreator : public CPUBackend::Creator { | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | public: | 
					
						
							|  |  |  |     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, | 
					
						
							|  |  |  |                                 const MNN::Op *op, Backend *backend) const { | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  |         auto eltwiseParam = op->main_as_Eltwise(); | 
					
						
							|  |  |  |         auto type         = eltwiseParam->type(); | 
					
						
							|  |  |  |         std::vector<float> coeff; | 
					
						
							|  |  |  |         // keep compatible with old model
 | 
					
						
							|  |  |  |         if (eltwiseParam->coeff()) { | 
					
						
							|  |  |  |             const int size = eltwiseParam->coeff()->size(); | 
					
						
							|  |  |  |             coeff.resize(size); | 
					
						
							|  |  |  |             memcpy(coeff.data(), eltwiseParam->coeff()->data(), size * sizeof(float)); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return new CPUEltwise(backend, type, coeff); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							| 
									
										
										
										
											2020-03-17 18:20:21 +08:00
										 |  |  | REGISTER_CPU_OP_CREATOR(CPUEltwiseCreator, OpType_Eltwise); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | } // namespace MNN
 |