| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  CPUQuantizedAdd.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2018/10/18.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUBackend.hpp"
 | 
					
						
							| 
									
										
										
										
											2022-07-19 13:52:07 +08:00
										 |  |  | #ifdef MNN_SUPPORT_DEPRECATED_OP
 | 
					
						
							|  |  |  | #include "backend/cpu/CPUQuantizedAdd.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "backend/cpu/CPUQuantizationUtils.hpp"
 | 
					
						
							|  |  |  | #include "core/Concurrency.h"
 | 
					
						
							|  |  |  | #include "core/Macro.h"
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | CPUQuantizedAdd::CPUQuantizedAdd(Backend *backend, const Op *op) : Execution(backend) { | 
					
						
							|  |  |  |     mQuantizedAddParam = op->main_as_QuantizedAdd(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUQuantizedAdd::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     mInput1Offset                   = -mQuantizedAddParam->input1QuantizedParam()->zeroPoint(); | 
					
						
							|  |  |  |     mInput2Offset                   = -mQuantizedAddParam->input2QuantizedParam()->zeroPoint(); | 
					
						
							|  |  |  |     mOutputOffset                   = mQuantizedAddParam->outputQuantizedParam()->zeroPoint(); | 
					
						
							|  |  |  |     const int leftShift             = 20; | 
					
						
							|  |  |  |     const double twiceMaxInputScale = 2 * std::max(mQuantizedAddParam->input1QuantizedParam()->scale(), | 
					
						
							|  |  |  |                                                    mQuantizedAddParam->input2QuantizedParam()->scale()); | 
					
						
							|  |  |  |     const double realInput1Multiplier = mQuantizedAddParam->input1QuantizedParam()->scale() / twiceMaxInputScale; | 
					
						
							|  |  |  |     const double realInput2Multiplier = mQuantizedAddParam->input2QuantizedParam()->scale() / twiceMaxInputScale; | 
					
						
							|  |  |  |     const double realOutputMultiplier = | 
					
						
							|  |  |  |         twiceMaxInputScale / ((1 << leftShift) * mQuantizedAddParam->outputQuantizedParam()->scale()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     QuantizeMultiplierSmallerThanOne(realInput1Multiplier, &mInput1Multiplier, &mInput1Shift); | 
					
						
							|  |  |  |     QuantizeMultiplierSmallerThanOne(realInput2Multiplier, &mInput2Multiplier, &mInput2Shift); | 
					
						
							|  |  |  |     QuantizeMultiplierSmallerThanOne(realOutputMultiplier, &mOutputMultiplier, &mOutputShift); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     CalculateActivationRangeUint8( | 
					
						
							|  |  |  |         mQuantizedAddParam->activationType(), mQuantizedAddParam->outputQuantizedParam()->zeroPoint(), | 
					
						
							|  |  |  |         mQuantizedAddParam->outputQuantizedParam()->scale(), &mOutputActivationMin, &mOutputActivationMax); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     int kReverseShiftResult1 = -mInput1Shift; | 
					
						
							|  |  |  |     int kReverseShiftResult2 = -mInput2Shift; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     int leftShift1  = kReverseShiftResult1 > 0 ? kReverseShiftResult1 : 0; | 
					
						
							|  |  |  |     mRightShift1 = kReverseShiftResult1 > 0 ? 0 : -kReverseShiftResult1; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     int leftShift2  = kReverseShiftResult2 > 0 ? kReverseShiftResult2 : 0; | 
					
						
							|  |  |  |     mRightShift2 = kReverseShiftResult2 > 0 ? 0 : -kReverseShiftResult2; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     mLeftShiftOut  = -mOutputShift > 0 ? -mOutputShift : 0; | 
					
						
							|  |  |  |     mRightShiftOut = -mOutputShift > 0 ? 0 : mOutputShift; | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     mLeftShiftResult1 = (1 << leftShift) * ((1 << leftShift1)); | 
					
						
							|  |  |  |     mLeftShiftResult2 = (1 << leftShift) * ((1 << leftShift2)); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-15 14:12:35 +08:00
										 |  |  |     MNN_ASSERT(leftShift + leftShift1 == leftShift); | 
					
						
							|  |  |  |     MNN_ASSERT(leftShift + leftShift2 == leftShift); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ErrorCode CPUQuantizedAdd::onExecute(const std::vector<MNN::Tensor *> &inputs, | 
					
						
							|  |  |  |                                      const std::vector<MNN::Tensor *> &outputs) { | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  | #ifdef MNN_USE_NEON
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |     int16x8_t input1OffsetVec, input2OffsetVec; | 
					
						
							|  |  |  |     int32x4_t outputOffsetVec, outputActivationMinVec, outputActivationMaxVec, leftShiftResult1Vec, leftShiftResult2Vec, input1MultiplierVec, input2MultiplierVec, outputMultiplierVec, leftShiftOutVec, rightShift1Vec, rightShift2Vec; | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     input1OffsetVec        = vdupq_n_s16(mInput1Offset); | 
					
						
							|  |  |  |     input2OffsetVec        = vdupq_n_s16(mInput2Offset); | 
					
						
							|  |  |  |     outputOffsetVec        = vdupq_n_s32(mOutputOffset); | 
					
						
							|  |  |  |     outputActivationMinVec = vdupq_n_s32(mOutputActivationMin); | 
					
						
							|  |  |  |     outputActivationMaxVec = vdupq_n_s32(mOutputActivationMax); | 
					
						
							|  |  |  |     leftShiftResult1Vec    = vdupq_n_s32(mLeftShiftResult1); | 
					
						
							|  |  |  |     leftShiftResult2Vec    = vdupq_n_s32(mLeftShiftResult2); | 
					
						
							|  |  |  |     input1MultiplierVec    = vdupq_n_s32(mInput1Multiplier); | 
					
						
							|  |  |  |     input2MultiplierVec    = vdupq_n_s32(mInput2Multiplier); | 
					
						
							|  |  |  |     outputMultiplierVec    = vdupq_n_s32(mOutputMultiplier); | 
					
						
							|  |  |  |     leftShiftOutVec        = vdupq_n_s32((1 << mLeftShiftOut)); | 
					
						
							|  |  |  |     rightShift1Vec      = vdupq_n_s32(-mRightShift1); | 
					
						
							|  |  |  |     rightShift2Vec      = vdupq_n_s32(-mRightShift2); | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     uint8_t *input1Data = inputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  |     uint8_t *input2Data = inputs[1]->host<uint8_t>(); | 
					
						
							|  |  |  |     uint8_t *outputData = outputs[0]->host<uint8_t>(); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |     int outputChannels = inputs[0]->channel(); | 
					
						
							|  |  |  |     int size = inputs[0]->batch()*inputs[0]->height()*inputs[0]->width()*ROUND_UP(outputChannels, 4); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     int threadNumber = std::max(((CPUBackend *)backend())->threadNumber(), 1); | 
					
						
							|  |  |  |     int countUnit    = UP_DIV(size, threadNumber); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |     MNN_CONCURRENCY_BEGIN(tId, threadNumber) { | 
					
						
							|  |  |  |         int realDstCount       = (int)ALIMIN(size - tId * countUnit, countUnit); | 
					
						
							|  |  |  |         uint8_t *curInput1Data = input1Data + tId * countUnit; | 
					
						
							|  |  |  |         uint8_t *curInput2Data = input2Data + tId * countUnit; | 
					
						
							|  |  |  |         uint8_t *curOutputData = outputData + tId * countUnit; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         int i = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef MNN_USE_NEON
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (; i <= realDstCount - 8; i += 8) { | 
					
						
							|  |  |  |             uint8x8_t input1Uint8 = vld1_u8(curInput1Data); | 
					
						
							|  |  |  |             int16x8_t input1S16   = vreinterpretq_s16_u16(vmovl_u8(input1Uint8)); | 
					
						
							|  |  |  |             int16x8_t input1Val   = vaddq_s16(input1S16, input1OffsetVec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             uint8x8_t input2Uint8 = vld1_u8(curInput2Data); | 
					
						
							|  |  |  |             int16x8_t input2S16   = vreinterpretq_s16_u16(vmovl_u8(input2Uint8)); | 
					
						
							|  |  |  |             int16x8_t input2Val   = vaddq_s16(input2S16, input2OffsetVec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int32x4_t input10 = vmovl_s16(vget_low_s16(input1Val)); | 
					
						
							|  |  |  |             int32x4_t input11 = vmovl_s16(vget_high_s16(input1Val)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int32x4_t input20 = vmovl_s16(vget_low_s16(input2Val)); | 
					
						
							|  |  |  |             int32x4_t input21 = vmovl_s16(vget_high_s16(input2Val)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int32x4_t shiftedInput1ValVec0 = vmulq_s32(input10, leftShiftResult1Vec); | 
					
						
							|  |  |  |             int32x4_t shiftedInput1ValVec1 = vmulq_s32(input11, leftShiftResult1Vec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int32x4_t shiftedInput2ValVec0 = vmulq_s32(input20, leftShiftResult2Vec); | 
					
						
							|  |  |  |             int32x4_t shiftedInput2ValVec1 = vmulq_s32(input21, leftShiftResult2Vec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             shiftedInput1ValVec0                = vqrdmulhq_s32(shiftedInput1ValVec0, input1MultiplierVec); | 
					
						
							|  |  |  |             const int32x4_t fixup00             = vshrq_n_s32(vandq_s32(shiftedInput1ValVec0, rightShift1Vec), 31); | 
					
						
							|  |  |  |             const int32x4_t fixedUpX00          = vqaddq_s32(shiftedInput1ValVec0, fixup00); | 
					
						
							|  |  |  |             const int32x4_t scaledInput1ValVec0 = vrshlq_s32(fixedUpX00, rightShift1Vec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             shiftedInput1ValVec1                = vqrdmulhq_s32(shiftedInput1ValVec1, input1MultiplierVec); | 
					
						
							|  |  |  |             const int32x4_t fixup01             = vshrq_n_s32(vandq_s32(shiftedInput1ValVec1, rightShift1Vec), 31); | 
					
						
							|  |  |  |             const int32x4_t fixedUpX01          = vqaddq_s32(shiftedInput1ValVec1, fixup01); | 
					
						
							|  |  |  |             const int32x4_t scaledInput1ValVec1 = vrshlq_s32(fixedUpX01, rightShift1Vec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             shiftedInput2ValVec0                = vqrdmulhq_s32(shiftedInput2ValVec0, input2MultiplierVec); | 
					
						
							|  |  |  |             const int32x4_t fixup20             = vshrq_n_s32(vandq_s32(shiftedInput2ValVec0, rightShift2Vec), 31); | 
					
						
							|  |  |  |             const int32x4_t fixedUpX20          = vqaddq_s32(shiftedInput2ValVec0, fixup20); | 
					
						
							|  |  |  |             const int32x4_t scaledInput2ValVec0 = vrshlq_s32(fixedUpX20, rightShift2Vec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             shiftedInput2ValVec1                = vqrdmulhq_s32(shiftedInput2ValVec1, input2MultiplierVec); | 
					
						
							|  |  |  |             const int32x4_t fixup21             = vshrq_n_s32(vandq_s32(shiftedInput2ValVec1, rightShift2Vec), 31); | 
					
						
							|  |  |  |             const int32x4_t fixedUpX21          = vqaddq_s32(shiftedInput2ValVec1, fixup21); | 
					
						
							|  |  |  |             const int32x4_t scaledInput2ValVec1 = vrshlq_s32(fixedUpX21, rightShift2Vec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int32x4_t rawSum0 = vaddq_s32(scaledInput1ValVec0, scaledInput2ValVec0); | 
					
						
							|  |  |  |             int32x4_t rawSum1 = vaddq_s32(scaledInput1ValVec1, scaledInput2ValVec1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             rawSum0 = RoundingDivideByPOT( | 
					
						
							|  |  |  |                 SaturatingRoundingDoublingHighMul(vmulq_s32(rawSum0, leftShiftOutVec), outputMultiplierVec), | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |                 mRightShiftOut); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |             rawSum1 = RoundingDivideByPOT( | 
					
						
							|  |  |  |                 SaturatingRoundingDoublingHighMul(vmulq_s32(rawSum1, leftShiftOutVec), outputMultiplierVec), | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |                 mRightShiftOut); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |             rawSum0 = vaddq_s32(rawSum0, outputOffsetVec); | 
					
						
							|  |  |  |             rawSum1 = vaddq_s32(rawSum1, outputOffsetVec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             rawSum0 = vmaxq_s32(rawSum0, outputActivationMinVec); | 
					
						
							|  |  |  |             rawSum1 = vmaxq_s32(rawSum1, outputActivationMinVec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             rawSum0 = vminq_s32(rawSum0, outputActivationMaxVec); | 
					
						
							|  |  |  |             rawSum1 = vminq_s32(rawSum1, outputActivationMaxVec); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int16x4_t rawSumS16n0 = vqmovn_s32(rawSum0); | 
					
						
							|  |  |  |             int16x4_t rawSumS16n1 = vqmovn_s32(rawSum1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             int16x8_t resS16 = vcombine_s16(rawSumS16n0, rawSumS16n1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             uint8x8_t resU8n0 = vqmovun_s16(resS16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             vst1_u8(curOutputData, resU8n0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             curInput1Data += 8; | 
					
						
							|  |  |  |             curInput2Data += 8; | 
					
						
							|  |  |  |             curOutputData += 8; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2020-07-02 17:42:09 +08:00
										 |  |  |         curInput1Data -= i; | 
					
						
							|  |  |  |         curInput2Data -= i; | 
					
						
							|  |  |  |         curOutputData -= i; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  | #endif
 | 
					
						
							|  |  |  |         for (; i < realDstCount; i++) { | 
					
						
							|  |  |  |             const int32_t input1Val        = mInput1Offset + curInput1Data[i]; | 
					
						
							|  |  |  |             const int32_t input2Val        = mInput2Offset + curInput2Data[i]; | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |             const int32_t shiftedInput1Val = input1Val * mLeftShiftResult1; | 
					
						
							|  |  |  |             const int32_t shiftedInput2Val = input2Val * mLeftShiftResult2; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             const int32_t scaledInput1Val  = RoundingDivideByPOT( | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |                 SaturatingRoundingDoublingHighMul(shiftedInput1Val, mInput1Multiplier), mRightShift1); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             const int32_t scaledInput2Val = RoundingDivideByPOT( | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |                 SaturatingRoundingDoublingHighMul(shiftedInput2Val, mInput2Multiplier), mRightShift2); | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             const int32_t rawSum = scaledInput1Val + scaledInput2Val; | 
					
						
							|  |  |  |             const int32_t rawOutput = | 
					
						
							| 
									
										
										
										
											2019-05-05 20:27:57 +08:00
										 |  |  |                 RoundingDivideByPOT(SaturatingRoundingDoublingHighMul(rawSum * (1 << mLeftShiftOut), mOutputMultiplier), | 
					
						
							|  |  |  |                                     mRightShiftOut) + mOutputOffset; | 
					
						
							| 
									
										
										
										
											2019-04-17 10:49:11 +08:00
										 |  |  |             const int32_t clampedOutput = std::min(mOutputActivationMax, std::max(mOutputActivationMin, rawOutput)); | 
					
						
							|  |  |  |             curOutputData[i]            = static_cast<uint8_t>(clampedOutput); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     MNN_CONCURRENCY_END(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return NO_ERROR; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class CPUQuantizedAddCreator : public CPUBackend::Creator { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, | 
					
						
							|  |  |  |                                 const MNN::Op *op, Backend *backend) const { | 
					
						
							|  |  |  |         return new CPUQuantizedAdd(backend, op); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | } // namespace MNN
 | 
					
						
							| 
									
										
											  
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
											2019-10-29 13:37:26 +08:00
										 |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2022-07-19 13:52:07 +08:00
										 |  |  | namespace MNN { | 
					
						
							|  |  |  | REGISTER_CPU_OP_CREATOR_OLD(CPUQuantizedAddCreator, OpType_QuantizedAdd); | 
					
						
							|  |  |  | } |