| 
									
										
										
										
											2025-01-22 14:47:50 +08:00
										 |  |  | import math | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from typing import Optional, Tuple | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from .model_mapper import ModelMapper | 
					
						
							|  |  |  | from .custom_op import FusedAttention | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Embedding(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, embed, config): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.hidden_size = config.hidden_size | 
					
						
							|  |  |  |         self.embed = embed | 
					
						
							|  |  |  |         if config.model_type == 'gemma2': | 
					
						
							|  |  |  |             normalizer = torch.tensor(self.hidden_size**0.5) | 
					
						
							|  |  |  |             self.embed.weight.data *= normalizer | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, input_ids): | 
					
						
							|  |  |  |         inputs_embeds = self.embed(input_ids).view(-1, 1, self.hidden_size) | 
					
						
							|  |  |  |         return inputs_embeds | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
							|  |  |  |     batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
							|  |  |  |     if n_rep == 1: | 
					
						
							|  |  |  |         return hidden_states | 
					
						
							|  |  |  |     hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
							|  |  |  |     return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Attention(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, attn, layer_id, config): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.export_fused_attn = False | 
					
						
							|  |  |  |         self.fused_attn = FusedAttention(config.hidden_size, f'/layers.{layer_id}/self_attn/FusedAttention') | 
					
						
							|  |  |  |         self.layer_id = layer_id | 
					
						
							|  |  |  |         self.hidden_size = config.hidden_size | 
					
						
							|  |  |  |         self.head_dim = config.head_dim | 
					
						
							|  |  |  |         if isinstance(config.num_attention_heads, list): | 
					
						
							|  |  |  |             self.num_heads = config.num_attention_heads[layer_id] | 
					
						
							|  |  |  |             self.num_key_value_heads = config.num_key_value_heads[layer_id] | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.head_dim = config.head_dim | 
					
						
							|  |  |  |             self.num_heads = config.num_attention_heads | 
					
						
							|  |  |  |             self.num_key_value_heads = config.num_key_value_heads | 
					
						
							|  |  |  |         self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
							|  |  |  |         self.rotary = config.rotary | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         ModelMapper.do_map(self, attn, config.model_map['attention']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if hasattr(self, 'qkv_proj') and self.qkv_proj is not None: | 
					
						
							|  |  |  |             # split qkv linear to q, k, v | 
					
						
							|  |  |  |             split_sizes = [self.hidden_size] * 3 | 
					
						
							|  |  |  |             if self.qkv_proj.weight.shape[0] != self.hidden_size * 3: | 
					
						
							|  |  |  |                 # M/GQA | 
					
						
							|  |  |  |                 split_sizes = [ | 
					
						
							|  |  |  |                     self.num_heads * self.head_dim,           # q_size | 
					
						
							|  |  |  |                     self.num_key_value_heads * self.head_dim, # k_size | 
					
						
							|  |  |  |                     self.num_key_value_heads * self.head_dim  # v_size | 
					
						
							|  |  |  |                 ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             self.q_proj = torch.nn.Linear(self.hidden_size, split_sizes[0]) | 
					
						
							|  |  |  |             self.k_proj = torch.nn.Linear(self.hidden_size, split_sizes[1]) | 
					
						
							|  |  |  |             self.v_proj = torch.nn.Linear(self.hidden_size, split_sizes[2]) | 
					
						
							|  |  |  |             if config.model_type == 'chatglm': | 
					
						
							|  |  |  |                 # chatglm-6b | 
					
						
							|  |  |  |                 qkv_weight = self.qkv_proj.weight.data.view(self.num_heads, 3, self.head_dim, self.hidden_size) | 
					
						
							|  |  |  |                 self.q_proj.weight.data = qkv_weight[:, 0, :, :].reshape(self.hidden_size, self.hidden_size) | 
					
						
							|  |  |  |                 self.k_proj.weight.data = qkv_weight[:, 1, :, :].reshape(self.hidden_size, self.hidden_size) | 
					
						
							|  |  |  |                 self.v_proj.weight.data = qkv_weight[:, 2, :, :].reshape(self.hidden_size, self.hidden_size) | 
					
						
							|  |  |  |                 qkv_bias = self.qkv_proj.bias.data.view(self.num_heads, 3, self.head_dim) | 
					
						
							|  |  |  |                 self.q_proj.bias.data = qkv_bias[:, 0, :].reshape(self.hidden_size) | 
					
						
							|  |  |  |                 self.k_proj.bias.data = qkv_bias[:, 1, :].reshape(self.hidden_size) | 
					
						
							|  |  |  |                 self.v_proj.bias.data = qkv_bias[:, 2, :].reshape(self.hidden_size) | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 # other | 
					
						
							|  |  |  |                 qw, kw, vw = torch.split(self.qkv_proj.weight, split_sizes) | 
					
						
							|  |  |  |                 self.q_proj.weight.data = qw | 
					
						
							|  |  |  |                 self.k_proj.weight.data = kw | 
					
						
							|  |  |  |                 self.v_proj.weight.data = vw | 
					
						
							|  |  |  |                 if self.qkv_proj.bias is not None: | 
					
						
							|  |  |  |                     qb, kb, vb = torch.split(self.qkv_proj.bias, split_sizes) | 
					
						
							|  |  |  |                     self.q_proj.bias.data = qb | 
					
						
							|  |  |  |                     self.k_proj.bias.data = kb | 
					
						
							|  |  |  |                     self.v_proj.bias.data = vb | 
					
						
							|  |  |  |                 else: | 
					
						
							| 
									
										
										
										
											2025-02-24 11:44:27 +08:00
										 |  |  |                     data_type = self.q_proj.weight.dtype | 
					
						
							|  |  |  |                     self.q_proj.bias.data = torch.zeros(split_sizes[0], dtype=data_type) | 
					
						
							|  |  |  |                     self.k_proj.bias.data = torch.zeros(split_sizes[1], dtype=data_type) | 
					
						
							|  |  |  |                     self.v_proj.bias.data = torch.zeros(split_sizes[2], dtype=data_type) | 
					
						
							| 
									
										
										
										
											2025-01-22 14:47:50 +08:00
										 |  |  |             self.q_proj.weight.requires_grad = False | 
					
						
							|  |  |  |             self.k_proj.weight.requires_grad = False | 
					
						
							|  |  |  |             self.v_proj.weight.requires_grad = False | 
					
						
							|  |  |  |             self.q_proj.bias.requires_grad = False | 
					
						
							|  |  |  |             self.k_proj.bias.requires_grad = False | 
					
						
							|  |  |  |             self.v_proj.bias.requires_grad = False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward( | 
					
						
							|  |  |  |         self, | 
					
						
							|  |  |  |         hidden_states: torch.Tensor, | 
					
						
							|  |  |  |         attention_mask: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |         past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
							|  |  |  |         rotary_pos_emb: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |         cross_attention_states: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |     ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
							|  |  |  |         bsz, q_len, _ = hidden_states.size() | 
					
						
							|  |  |  |         query_states = self.q_proj(hidden_states) | 
					
						
							|  |  |  |         if cross_attention_states is not None: | 
					
						
							|  |  |  |             hidden_states = cross_attention_states | 
					
						
							|  |  |  |         key_states = self.k_proj(hidden_states) | 
					
						
							|  |  |  |         value_states = self.v_proj(hidden_states) | 
					
						
							|  |  |  |         query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
							|  |  |  |         key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) | 
					
						
							|  |  |  |         value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) | 
					
						
							|  |  |  |         # openelm model has qk_norm | 
					
						
							|  |  |  |         if hasattr(self, 'q_norm') and self.q_norm is not None and \ | 
					
						
							|  |  |  |            hasattr(self, 'k_norm') and self.k_norm is not None : | 
					
						
							|  |  |  |             query_states = self.q_norm(query_states) | 
					
						
							|  |  |  |             key_states = self.k_norm(key_states) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         kv_seq_len = key_states.shape[1] | 
					
						
							|  |  |  |         if past_key_value is not None: | 
					
						
							|  |  |  |             kv_seq_len += past_key_value[0].shape[1] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # rope | 
					
						
							|  |  |  |         cos, sin = rotary_pos_emb[0], rotary_pos_emb[1] | 
					
						
							|  |  |  |         query_states = self.rotary.apply_rotary_pos(query_states, cos, sin) | 
					
						
							|  |  |  |         key_states = self.rotary.apply_rotary_pos(key_states, cos, sin) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if self.export_fused_attn: | 
					
						
							|  |  |  |             attn_output = self.fused_attn(query_states, key_states, value_states, attention_mask) | 
					
						
							|  |  |  |             attn_output = self.o_proj(attn_output) | 
					
						
							|  |  |  |             return attn_output, past_key_value | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # kv cache | 
					
						
							|  |  |  |         if past_key_value is not None: | 
					
						
							|  |  |  |             past_key, past_value = past_key_value[0], past_key_value[1] | 
					
						
							|  |  |  |             key_states = torch.cat((past_key, key_states), dim=1) | 
					
						
							|  |  |  |             value_states = torch.cat((past_value, value_states), dim=1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         past_key_value = torch.stack((key_states, value_states)) | 
					
						
							|  |  |  |         query_states = query_states.transpose(1, 2) | 
					
						
							|  |  |  |         key_states = key_states.permute([0, 2, 3, 1]) | 
					
						
							|  |  |  |         value_states = value_states.transpose(1, 2) | 
					
						
							|  |  |  |         # repeat k/v heads if n_kv_heads < n_heads | 
					
						
							|  |  |  |         key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
							|  |  |  |         value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
							|  |  |  |         #------- attention ---------- | 
					
						
							|  |  |  |         # query_states @ key_states | 
					
						
							|  |  |  |         attn_weights = torch.matmul(query_states, key_states) / math.sqrt(self.head_dim) | 
					
						
							|  |  |  |         # attention_mask | 
					
						
							|  |  |  |         if attention_mask.dtype in (torch.bool, torch.int32): | 
					
						
							|  |  |  |             # chatglm | 
					
						
							|  |  |  |             attn_weights.masked_fill_(attention_mask, -10000.0) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             attn_weights = attn_weights + attention_mask | 
					
						
							|  |  |  |         # upcast softmax to fp32 | 
					
						
							|  |  |  |         attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
							|  |  |  |         # attn_weights @ value_states | 
					
						
							|  |  |  |         attn_output = torch.matmul(attn_weights, value_states) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
							|  |  |  |         attn_output = attn_output.reshape(bsz, q_len, -1) | 
					
						
							|  |  |  |         attn_output = self.o_proj(attn_output) | 
					
						
							|  |  |  |         return attn_output, past_key_value | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def rotate_half(x): | 
					
						
							|  |  |  |     x1 = x[..., : x.shape[-1] // 2] | 
					
						
							|  |  |  |     x2 = x[..., x.shape[-1] // 2 :] | 
					
						
							|  |  |  |     return torch.cat((-x2, x1), dim=-1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Rotary(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, config): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.rope_theta = config.rope_theta | 
					
						
							|  |  |  |         self.rotary_dim = config.head_dim | 
					
						
							|  |  |  |         self.model_type = config.model_type | 
					
						
							|  |  |  |         if hasattr(config, 'rotary_dim'): | 
					
						
							|  |  |  |             self.rotary_dim = config.rotary_dim | 
					
						
							|  |  |  |         if self.model_type == 'chatglm': | 
					
						
							|  |  |  |             self.rotary_dim = config.head_dim // 2 | 
					
						
							|  |  |  |         self.theta = 1.0 / (self.rope_theta ** (torch.arange(0, self.rotary_dim, 2, dtype=torch.float32) / self.rotary_dim)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, position_ids): | 
					
						
							|  |  |  |         position_ids = position_ids.float().reshape(-1, 1) | 
					
						
							|  |  |  |         idx_theta = position_ids * self.theta | 
					
						
							|  |  |  |         rotary_pos_emb = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)]) | 
					
						
							|  |  |  |         if self.model_type != 'chatglm2': | 
					
						
							|  |  |  |             rotary_pos_emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) | 
					
						
							|  |  |  |         rotary_pos_emb = rotary_pos_emb.unsqueeze(2).unsqueeze(1) | 
					
						
							|  |  |  |         return rotary_pos_emb | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def apply_rotary_pos(self, x, cos, sin): | 
					
						
							|  |  |  |         if self.model_type == 'chatglm': | 
					
						
							|  |  |  |             return self.chatglm_rotary_pos(x, cos, sin) | 
					
						
							|  |  |  |         if self.model_type == 'chatglm2': | 
					
						
							|  |  |  |             return self.chatglm2_rotary_pos(x, cos, sin) | 
					
						
							|  |  |  |         if self.model_type == 'phi-msft': | 
					
						
							|  |  |  |             return self.phi_rotary_pos(x, cos, sin) | 
					
						
							|  |  |  |         return self.llama_rotary_pos(x, cos, sin) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def llama_rotary_pos(self, x, cos, sin): | 
					
						
							|  |  |  |         x = (x * cos) + (rotate_half(x) * sin) | 
					
						
							|  |  |  |         return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def phi_rotary_pos(self, x, cos, sin): | 
					
						
							|  |  |  |         x, x_pass = x[..., :self.rotary_dim], x[..., self.rotary_dim:] | 
					
						
							|  |  |  |         x = (x * cos) + (rotate_half(x) * sin) | 
					
						
							|  |  |  |         return torch.cat((x, x_pass), dim=-1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def chatglm2_rotary_pos(self, x, cos, sin): | 
					
						
							|  |  |  |         x, x_pass = x[..., :self.rotary_dim], x[..., self.rotary_dim:] | 
					
						
							|  |  |  |         b, s, n, h = x.shape | 
					
						
							|  |  |  |         xshaped = x.view(b, s, n, h//2, 2) | 
					
						
							|  |  |  |         x = torch.concat( | 
					
						
							|  |  |  |             [ | 
					
						
							|  |  |  |                 xshaped[..., 0] * cos - xshaped[..., 1] * sin, | 
					
						
							|  |  |  |                 xshaped[..., 1] * cos + xshaped[..., 0] * sin, | 
					
						
							|  |  |  |             ], | 
					
						
							|  |  |  |             -1, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         return torch.cat((x, x_pass), dim=-1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def chatglm_rotary_pos(self, x, cos, sin): | 
					
						
							|  |  |  |         seq = x.shape[1] | 
					
						
							|  |  |  |         x1, x2 = x[..., :self.rotary_dim], x[..., self.rotary_dim:] | 
					
						
							|  |  |  |         cos1, sin1 = cos[:, :seq, ...], sin[:, :seq, ...] | 
					
						
							|  |  |  |         cos2, sin2 = cos[:, seq:, ...], sin[:, seq:, ...] | 
					
						
							|  |  |  |         x1 = (x1 * cos1) + (rotate_half(x1) * sin1) | 
					
						
							|  |  |  |         x2 = (x2 * cos2) + (rotate_half(x2) * sin2) | 
					
						
							|  |  |  |         return torch.cat((x1, x2), dim=-1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class VisionRotary(Rotary): | 
					
						
							|  |  |  |     def __init__(self, config): | 
					
						
							|  |  |  |         super().__init__(config) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # support [h_pos, w_pos] | 
					
						
							|  |  |  |     def forward(self, position_ids): | 
					
						
							|  |  |  |         # [2, patch_len, 1] | 
					
						
							|  |  |  |         position_ids = position_ids.float().unsqueeze(-1) | 
					
						
							|  |  |  |         idx_theta = position_ids * self.theta | 
					
						
							|  |  |  |         # [patch_len, rotary_dim] | 
					
						
							|  |  |  |         idx_theta = idx_theta.permute(1, 0, 2).reshape(-1, self.rotary_dim) | 
					
						
							|  |  |  |         rotary_pos_emb = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)]) | 
					
						
							|  |  |  |         rotary_pos_emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) | 
					
						
							|  |  |  |         rotary_pos_emb = rotary_pos_emb.unsqueeze(2).unsqueeze(1) | 
					
						
							|  |  |  |         return rotary_pos_emb | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Decoder(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, decoder, layer_id, config): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.cross_decoder = False | 
					
						
							|  |  |  |         ModelMapper.do_map(self, decoder, config.model_map['decoder']) | 
					
						
							|  |  |  |         # mllama has cross_attn | 
					
						
							|  |  |  |         if hasattr(self, 'cross_attn') and self.cross_attn is not None: | 
					
						
							|  |  |  |             self.cross_decoder = True | 
					
						
							|  |  |  |             self.self_attn = Attention(self.cross_attn, layer_id, config) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.self_attn = Attention(self.self_attn, layer_id, config) | 
					
						
							|  |  |  |         self.hidden_size = config.hidden_size | 
					
						
							|  |  |  |         # chatglm | 
					
						
							|  |  |  |         self.alpha = (2 * config.num_hidden_layers) ** 0.5 if config.model_type == 'chatglm' else 1.0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward( | 
					
						
							|  |  |  |         self, | 
					
						
							|  |  |  |         hidden_states: torch.Tensor, | 
					
						
							|  |  |  |         rotary_pos_emb: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |         attention_mask: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |         past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
							|  |  |  |         cross_attention_states: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |         cross_attention_mask: Optional[torch.Tensor] = None, | 
					
						
							|  |  |  |     ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
							|  |  |  |         hidden_states = hidden_states.view(1, -1, self.hidden_size) | 
					
						
							|  |  |  |         residual = hidden_states | 
					
						
							|  |  |  |         hidden_states = self.input_layernorm(hidden_states) | 
					
						
							|  |  |  |         norm_hidden_states = hidden_states | 
					
						
							|  |  |  |         # Self Attention | 
					
						
							|  |  |  |         hidden_states, present_key_value = self.self_attn( | 
					
						
							|  |  |  |             hidden_states=hidden_states, | 
					
						
							|  |  |  |             rotary_pos_emb=rotary_pos_emb, | 
					
						
							|  |  |  |             attention_mask=attention_mask, | 
					
						
							|  |  |  |             past_key_value=past_key_value, | 
					
						
							|  |  |  |             cross_attention_states=cross_attention_states, | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         # Fully Connected | 
					
						
							|  |  |  |         if not hasattr(self, 'post_attention_layernorm'): | 
					
						
							|  |  |  |             # phi | 
					
						
							|  |  |  |             feed_forward_hidden_states = self.mlp(norm_hidden_states) | 
					
						
							|  |  |  |             hidden_states = hidden_states + feed_forward_hidden_states + residual | 
					
						
							|  |  |  |         elif self.alpha != 1.0: | 
					
						
							|  |  |  |             # chatglm-6b | 
					
						
							|  |  |  |             hidden_states = norm_hidden_states * self.alpha + hidden_states | 
					
						
							|  |  |  |             mlp_input = self.post_attention_layernorm(hidden_states) | 
					
						
							|  |  |  |             mlp_output = self.mlp(mlp_input) | 
					
						
							|  |  |  |             hidden_states = mlp_input * self.alpha + mlp_output | 
					
						
							|  |  |  |         elif hasattr(self, 'pre_feedforward_layernorm'): | 
					
						
							|  |  |  |             # gemma2 | 
					
						
							|  |  |  |             hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
							|  |  |  |             hidden_states = residual + hidden_states | 
					
						
							|  |  |  |             residual = hidden_states | 
					
						
							|  |  |  |             hidden_states = self.pre_feedforward_layernorm(hidden_states) | 
					
						
							|  |  |  |             hidden_states = self.mlp(hidden_states) | 
					
						
							|  |  |  |             hidden_states = self.post_feedforward_layernorm(hidden_states) | 
					
						
							|  |  |  |             hidden_states = residual + hidden_states | 
					
						
							|  |  |  |         elif cross_attention_mask is not None and self.cross_decoder: | 
					
						
							|  |  |  |             hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states | 
					
						
							|  |  |  |             residual = hidden_states | 
					
						
							|  |  |  |             hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
							|  |  |  |             hidden_states = self.mlp(hidden_states) | 
					
						
							|  |  |  |             hidden_states = cross_attention_mask * hidden_states | 
					
						
							|  |  |  |             hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             # general | 
					
						
							|  |  |  |             hidden_states = residual + hidden_states | 
					
						
							|  |  |  |             residual = hidden_states | 
					
						
							|  |  |  |             hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
							|  |  |  |             hidden_states = self.mlp(hidden_states) | 
					
						
							|  |  |  |             hidden_states = residual + hidden_states | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return hidden_states, present_key_value | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class Lm(torch.nn.Module): | 
					
						
							|  |  |  |     def __init__(self, lm_, final_layernorm_, config): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.final_layernorm = final_layernorm_ | 
					
						
							|  |  |  |         self.lm = lm_ | 
					
						
							|  |  |  |         self.hidden_size = config.hidden_size | 
					
						
							|  |  |  |         self.ppl = config.args.ppl | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2025-02-24 11:44:27 +08:00
										 |  |  |     def forward(self, hidden_states, logits_index: int = -1): | 
					
						
							|  |  |  |         hidden_states = hidden_states[:, logits_index:, :] | 
					
						
							| 
									
										
										
										
											2025-01-22 14:47:50 +08:00
										 |  |  |         hidden_states = self.final_layernorm(hidden_states) | 
					
						
							|  |  |  |         m_logits = self.lm(hidden_states) | 
					
						
							|  |  |  |         return m_logits |