MNN/source/core/Interpreter.cpp

268 lines
8.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// Interpreter.cpp
// MNN
//
// Created by MNN on 2018/07/30.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include "MNN_generated.h"
2019-12-27 22:16:57 +08:00
#include "core/AutoStorage.h"
#include <MNN/Interpreter.hpp>
#include "core/Session.hpp"
#include "core/FileLoader.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
struct Content {
AutoStorage<uint8_t> buffer;
const Net* net = nullptr;
std::vector<std::unique_ptr<Session>> sessions;
std::map<const Tensor*, const Session*> tensorMap;
};
Interpreter* Interpreter::createFromFile(const char* file) {
if (nullptr == file) {
MNN_PRINT("NULL file for create interpreter");
return nullptr;
}
std::unique_ptr<FileLoader> loader(new FileLoader(file));
if (!loader->valid()) {
MNN_PRINT("Create interpreter failed, open %s error\n", file);
return nullptr;
}
bool result = loader->read();
if (!result) {
MNN_PRINT("Read file error\n");
return nullptr;
}
if (loader->size() == 0) {
MNN_PRINT("Create interpreter failed, %s is empty\n", file);
return nullptr;
}
auto net = new Content;
bool success = loader->merge(net->buffer);
if (!success) {
return nullptr;
}
loader.reset();
return createFromBufferInternal(net);
}
Interpreter* Interpreter::createFromBuffer(const void* buffer, size_t size) {
if (nullptr == buffer || 0 == size) {
2019-04-17 10:49:11 +08:00
MNN_PRINT("Buffer is null for create interpreter\n");
return nullptr;
}
auto net = new Content;
net->buffer.reset((int)size);
if (nullptr == net->buffer.get()) {
MNN_ERROR("Memory not enought!\n");
return nullptr;
}
::memcpy(net->buffer.get(), buffer, size);
return createFromBufferInternal(net);
}
Interpreter* Interpreter::createFromBufferInternal(Content* net) {
if (nullptr == net) {
MNN_PRINT("Buffer is null for create interpreter\n");
return nullptr;
}
flatbuffers::Verifier verify((const uint8_t*)(net->buffer.get()), net->buffer.size());
if (false == VerifyNetBuffer(verify)) {
MNN_PRINT("Invalidate buffer to create interpreter\n");
delete net;
return nullptr;
}
net->net = GetNet(net->buffer.get());
if (nullptr == net->net->oplists()) {
MNN_ERROR("Model has no oplist\n");
delete net;
2019-04-17 10:49:11 +08:00
return nullptr;
}
return new Interpreter(net);
}
Interpreter::Interpreter(Content* net) {
MNN_ASSERT(nullptr != net);
mNet = net;
}
Interpreter::~Interpreter() {
delete mNet;
}
Session* Interpreter::createMultiPathSession(const std::vector<ScheduleConfig>& configs) {
if (nullptr == mNet->buffer.get()) {
MNN_ERROR("The model buffer has been released. Can't create session\n");
return nullptr;
}
auto info = Schedule::schedule(mNet->net, configs);
2019-04-17 10:49:11 +08:00
auto newSession = std::unique_ptr<Session>(new Session(info));
if (!newSession->valid()) {
MNN_PRINT("Invalide Session!!\n");
return nullptr;
}
auto result = newSession.get();
- build: - unify schema building in core and converter; - add more build script for android; - add linux build script for python; - ops impl: - add floor mod support in binary; - use eltwise impl in add/max/sub/mul binary for optimization; - remove fake double support in cast; - fix 5d support for concat; - add adjX and adjY support for batch matmul; - optimize conv2d back prop filter; - add pad mode support for conv3d; - fix bug in conv2d & conv depthwise with very small feature map; - optimize binary without broacast; - add data types support for gather; - add gather ND support; - use uint8 data type in gather v2; - add transpose support for matmul; - add matrix band part; - add dim != 4 support for padding, reshape & tensor convert; - add pad type support for pool3d; - make ops based on TensorFlow Lite quantization optional; - add all & any support for reduction; - use type in parameter as output type in reduction; - add int support for unary; - add variable weight support for conv2d; - fix conv2d depthwise weights initialization; - fix type support for transpose; - fix grad outputs count for reduce grad and reshape grad; - fix priorbox & detection output; - fix metal softmax error; - python: - add runSessionWithCallBackInfo interface; - add max nodes limit (1400) for visualization tool; - fix save error in python3; - align default dim; - convert: - add extra design for optimization; - add more post converting optimizers; - add caffe v1 weights blob support; - add cast, unary, conv transpose support for onnx model; - optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model; - add cos/sin/atan/tan support for unary for tensorflow model; - add any/all support for reduction for tensorflow model; - add elu, conv3d, pool3d support for tensorflow model; - optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model; - others: - fix size computer lock; - fix thread pool deadlock; - add express & parameters in express; - rewrite blitter chooser without static map; - add tests for expr;
2019-10-29 13:37:26 +08:00
if (info.validForResize) {
result->resize();
}
2019-04-17 10:49:11 +08:00
mNet->sessions.emplace_back(std::move(newSession));
return result;
}
Session* Interpreter::createSession(const ScheduleConfig& config) {
return createMultiPathSession({config});
}
2019-04-17 10:49:11 +08:00
bool Interpreter::releaseSession(Session* session) {
for (auto iter = mNet->sessions.begin(); iter != mNet->sessions.end(); iter++) {
// TODO Delete tensormap
for (auto tIter = mNet->tensorMap.begin(); tIter != mNet->tensorMap.end();) {
if (tIter->second == session) {
tIter = mNet->tensorMap.erase(tIter);
continue;
}
tIter++;
}
if ((*iter).get() == session) {
mNet->sessions.erase(iter);
return true;
}
}
return false;
}
ErrorCode Interpreter::runSession(Session* session) const {
return session->run();
}
Tensor* Interpreter::getSessionInput(const Session* session, const char* name) {
MNN_ASSERT(nullptr != session);
if (session == nullptr) {
return nullptr;
}
auto tensor = session->getInput(name);
mNet->tensorMap.insert(std::make_pair(tensor, session));
return tensor;
}
Tensor* Interpreter::getSessionOutput(const Session* session, const char* name) {
MNN_ASSERT(nullptr != session);
auto tensor = session->getOutput(name);
mNet->tensorMap.insert(std::make_pair(tensor, session));
return tensor;
}
const std::map<std::string, Tensor*>& Interpreter::getSessionInputAll(const Session* session) const {
2019-08-08 14:42:14 +08:00
auto& tensors = session->getInputAll();
for (auto& iter : tensors) {
mNet->tensorMap.insert(std::make_pair(iter.second, session));
}
return tensors;
2019-04-17 10:49:11 +08:00
}
const std::map<std::string, Tensor*>& Interpreter::getSessionOutputAll(const Session* session) const {
2019-08-08 14:42:14 +08:00
auto& tensors = session->getOutputAll();
for (auto& iter : tensors) {
mNet->tensorMap.insert(std::make_pair(iter.second, session));
}
return tensors;
2019-04-17 10:49:11 +08:00
}
void Interpreter::resizeSession(Session* session) {
if (mNet->buffer.get() == nullptr) {
MNN_ERROR("The model buffer has been released. Can't resize session\n");
return;
}
if (session->getNeedResize()) {
session->resize();
}
}
ErrorCode Interpreter::runSessionWithCallBack(const Session* session, const TensorCallBack& before,
const TensorCallBack& after, bool sync) const {
auto beforeWrap = [&before](const std::vector<Tensor*>& tensors, const OperatorInfo* info) {
return before(tensors, info->name());
};
auto afterWrap = [&after](const std::vector<Tensor*>& tensors, const OperatorInfo* info) {
return after(tensors, info->name());
};
return runSessionWithCallBackInfo(session, beforeWrap, afterWrap, sync);
}
ErrorCode Interpreter::runSessionWithCallBackInfo(const Session* session, const TensorCallBackWithInfo& before,
const TensorCallBackWithInfo& callBack, bool sync) const {
return session->runWithCallBack(before, callBack, sync);
}
const Backend* Interpreter::getBackend(const Session* session, const Tensor* tensor) const {
return session->getBackEnd(tensor);
}
void Interpreter::releaseModel() {
mNet->buffer.release();
for (auto& iter : mNet->sessions) {
iter->releaseCache();
}
}
void Interpreter::resizeTensor(Tensor* tensor, int batch, int channel, int height, int width) {
if (tensor->getDimensionType() == Tensor::TENSORFLOW) {
resizeTensor(tensor, {batch, height, width, channel});
} else {
resizeTensor(tensor, {batch, channel, height, width});
}
}
2019-04-17 10:49:11 +08:00
void Interpreter::resizeTensor(Tensor* tensor, const std::vector<int>& dims) {
MNN_ASSERT(nullptr != tensor);
bool dirty = false;
if (tensor->buffer().dimensions != dims.size()) {
dirty = true;
} else {
for (int i = 0; i < dims.size(); ++i) {
if (tensor->buffer().dim[i].extent != dims[i]) {
dirty = true;
break;
}
}
}
if (!dirty) {
return;
}
tensor->buffer().dimensions = (int)dims.size();
for (int i = 0; i < dims.size(); ++i) {
tensor->buffer().dim[i].extent = dims[i];
}
auto relatedSessionIter = mNet->tensorMap.find(tensor);
MNN_ASSERT(relatedSessionIter != mNet->tensorMap.end());
((MNN::Session*)relatedSessionIter->second)->setNeedResize();
}
const char* Interpreter::bizCode() const {
const flatbuffers::String* code = mNet->net->bizCode();
return code->c_str();
}
std::pair<const void*, size_t> Interpreter::getModelBuffer() const {
return std::make_pair(mNet->buffer.get(), mNet->buffer.size());
}
ErrorCode Interpreter::updateSessionToModel(Session* session) {
if (mNet->buffer.get() == nullptr) {
MNN_ERROR("Can't updateSessionToModel because you called releaseModel before\n");
return INPUT_DATA_ERROR;
}
return session->updateToModel((Net*)mNet->net);
}
2019-04-17 10:49:11 +08:00
} // namespace MNN