MNN/source/core/ConvolutionCommon.cpp

414 lines
14 KiB
C++
Raw Normal View History

//
// ConvolutionCommon.cpp
// MNN
//
// Created by MNN on b'2020/03/02'.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "half.hpp"
#include <math.h>
#include "ConvolutionCommon.hpp"
namespace MNN {
static inline void *MNNMemoryAllocAlignZeroAlign(size_t size) {
return MNNMemoryCallocAlign(size, MNN_MEMORY_ALIGN_DEFAULT);
}
static int ReadBlobDim(unsigned char *&myfile, unsigned short *shape, int shapeBufCnt) {
int uSize = myfile[0];
myfile++;
if (uSize > 4) {
printf("Read shape error!\n");
return 0;
}
int copyLength = uSize;
if (copyLength > shapeBufCnt) {
copyLength = shapeBufCnt;
}
::memcpy(shape, myfile, sizeof(unsigned short) * copyLength);
myfile += copyLength * sizeof(unsigned short);
return copyLength;
}
static double _log2(double x) {
return log(x) / log(2);
}
static uint32_t atLestBitsCnt(uint32_t n) {
for (uint32_t i = 0; i < 32; i++) {
int32_t t = n << i;
if (t < 0)
return 32 - i - (((t << 1) == 0) ? 1 : 0);
}
return 0;
}
static void SplitBufToArray(uint8_t *buf, size_t bufLen, uint8_t *arr, size_t arrLen, size_t iNeedBits) {
unsigned char cMask = (1 << (iNeedBits)) - 1;
unsigned char *tmp = (unsigned char *)buf;
int iOffset = 0;
for (unsigned int i = 0; i < arrLen; i++) {
unsigned char idx = 0;
long uShift = 8 - iNeedBits - iOffset % 8;
if (uShift < 0) {
idx = (tmp[iOffset / 8] << (0 - uShift)) & cMask;
idx |= (tmp[(iOffset / 8) + 1] >> (8 + uShift)) & cMask;
} else {
idx = (tmp[iOffset / 8] >> uShift) & cMask;
}
iOffset += iNeedBits;
if (iOffset % 8 == 0) {
tmp += iOffset / 8;
iOffset = 0;
}
arr[i] = idx;
}
}
// fixme!!! not efficiency
typedef struct _SIMPLE_SET {
int8_t *UniSet;
uint32_t UniSetSize;
uint32_t CurUniCnt;
} SIMPLE_SET, *PSIMPLE_SET;
static PSIMPLE_SET CreateSimpleSet(uint32_t maxSize) {
PSIMPLE_SET set = (PSIMPLE_SET)calloc(1, sizeof(SIMPLE_SET));
if (set == nullptr)
return nullptr;
set->UniSet = (int8_t *)calloc(maxSize, sizeof(int8_t));
set->UniSetSize = maxSize;
set->CurUniCnt = 0;
return set;
}
static void SimpleRank(int8_t *data, uint32_t cnt, int up) {
if (up) {
for (uint32_t i = 0; i < cnt; i++) {
for (uint32_t j = i + 1; j < cnt; j++) {
if (data[i] > data[j]) {
int8_t tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
}
}
} else {
for (uint32_t i = 0; i < cnt; i++) {
for (uint32_t j = i + 1; j < cnt; j++) {
if (data[i] < data[j]) {
int8_t tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
}
}
}
}
static void InsertSimpleSet(PSIMPLE_SET set, int8_t value) {
if (set->CurUniCnt >= set->UniSetSize)
return;
for (uint32_t i = 0; i < set->CurUniCnt; i++) {
if (set->UniSet[i] == value)
return;
}
set->UniSet[set->CurUniCnt++] = value;
// SimpleRank(set->UniSet, set->CurUniCnt, 1);
}
void DestorySimpleSet(PSIMPLE_SET set) {
if (set->UniSet != nullptr)
free(set->UniSet);
free(set);
}
typedef struct _SIMPLE_MAP {
int8_t *CharCharMap;
uint32_t CharMapSize;
uint32_t CurMapCnt;
} SIMPLE_MAP, *PSIMPLE_MAP;
static PSIMPLE_MAP CreateSimpleMap(uint32_t MaxCnt) {
PSIMPLE_MAP map = (PSIMPLE_MAP)calloc(1, sizeof(SIMPLE_MAP));
if (map == nullptr)
return nullptr;
map->CharMapSize = MaxCnt * sizeof(int8_t);
map->CurMapCnt = 0;
map->CharCharMap = (int8_t *)calloc(1, MaxCnt * 2);
return map;
}
static void DestroySimpleMap(PSIMPLE_MAP map) {
if (map->CharCharMap)
free(map->CharCharMap);
free(map);
}
static void InsertMap(PSIMPLE_MAP map, int8_t k, int8_t v) {
for (uint32_t i = 0; i < map->CurMapCnt; i++) {
if (map->CharCharMap[i * 2] == k) {
map->CharCharMap[i * 2 + 1] = v;
return;
}
}
if (map->CurMapCnt >= map->CharMapSize)
return;
map->CharCharMap[map->CurMapCnt * 2] = k;
map->CharCharMap[map->CurMapCnt * 2 + 1] = v;
map->CurMapCnt++;
}
static int8_t FindInMap(PSIMPLE_MAP map, int8_t k, int *found) {
for (uint32_t i = 0; i < map->CurMapCnt; i++) {
if (map->CharCharMap[i * 2] == k) {
if (found != nullptr)
*found = 1;
return map->CharCharMap[i * 2 + 1];
}
}
if (found != nullptr)
*found = 0;
return 0;
}
static void StreamSizeRead(void *dst, int unit, size_t count, unsigned char *&file) {
::memcpy(dst, file, unit * count);
file += (unit * count);
}
static int8_t *ReadQuanData_c(unsigned char *&s, uint32_t *len) {
int8_t *blob = nullptr;
int8_t *samples = nullptr;
uint8_t *idxBuf = nullptr;
uint8_t *idxBytes = nullptr;
uint32_t dataCnt = 1;
do {
// blob shape
unsigned short shape[64] = {0};
uint32_t shapeDim = (uint32_t)ReadBlobDim(s, shape, 64);
if (shapeDim == 0 || shapeDim > 64)
break;
for (uint32_t i = 0; i < shapeDim; i++)
dataCnt *= shape[i];
// sample
uint32_t sampleCnt = 0;
StreamSizeRead(&sampleCnt, 1, 1, s);
if (0 == sampleCnt) {
sampleCnt = 256;
}
samples = (int8_t *)MNNMemoryAllocAlignZeroAlign(sampleCnt);
if (samples == nullptr)
break;
StreamSizeRead(samples, 1, sampleCnt, s);
SimpleRank(samples, sampleCnt, 1);
// index
uint32_t idxBitsCnt = atLestBitsCnt(sampleCnt);
size_t idxBufSize = ceil(idxBitsCnt * dataCnt * 0.125);
idxBuf = (uint8_t *)MNNMemoryAllocAlignZeroAlign(idxBufSize);
if (nullptr == idxBuf) {
MNN_ERROR("Not enought memory\n");
break;
}
StreamSizeRead(idxBuf, 1, idxBufSize, s);
// split index value into bytes
idxBytes = (uint8_t *)MNNMemoryAllocAlignZeroAlign(dataCnt * sizeof(uint8_t));
if (idxBitsCnt == 0 || nullptr == idxBytes) {
break;
}
SplitBufToArray(idxBuf, (uint32_t)idxBufSize, idxBytes, (uint32_t)dataCnt, (uint32_t)idxBitsCnt);
int i = 0;
blob = (int8_t *)MNNMemoryAllocAlignZeroAlign((size_t)dataCnt);
if (nullptr == blob) {
break;
}
for (i = 0; i < dataCnt; i++) {
if (idxBytes[i] >= sampleCnt) {
MNN_PRINT("iNeedBits is %u\nRead quan weights error with idx:%d\n", idxBitsCnt, (int)idxBytes[i]);
break;
}
blob[i] = samples[idxBytes[i]];
}
if (i < dataCnt) {
MNNMemoryFreeAlign(blob);
blob = nullptr;
break;
}
} while (0);
if (samples != nullptr)
MNNMemoryFreeAlign(samples);
if (idxBuf != nullptr)
MNNMemoryFreeAlign(idxBuf);
if (idxBytes != nullptr)
MNNMemoryFreeAlign(idxBytes);
if (len)
*len = blob ? dataCnt : 0;
return blob;
}
static int8_t *ReadSparseQuanData_c(unsigned char *&myfile, uint32_t *len) {
// MNN_ERROR("sparse:%d\n", 1);
unsigned short shape[64] = {0};
unsigned char ucMapSize;
PSIMPLE_SET setWeight = CreateSimpleSet(256);
if (setWeight == nullptr) {
return nullptr;
}
std::shared_ptr<unsigned int> __autoReleaseSetWeight(nullptr, [setWeight](void *) { DestorySimpleSet(setWeight); });
unsigned int nnz;
unsigned char iIdxNeedBits;
int8_t *blob = nullptr;
// 1. weights blob shape(unsigned int32)
int ShapeDim = ReadBlobDim(myfile, shape, 64);
int Size = sizeof(int8_t);
for (int i = 0; i < ShapeDim; i++)
Size *= shape[i];
blob = (int8_t *)MNNMemoryAllocAlignZeroAlign((size_t)Size);
if (blob == nullptr)
return nullptr;
// 2. nnz
StreamSizeRead(&nnz, 4, 1, myfile);
// 3. max_step use # bits () (unsigned char)
StreamSizeRead(&iIdxNeedBits, 1, 1, myfile);
// read idx array
// 4. buf for steps ceil(nnz*step need bits/8)
AutoStorage<unsigned char> arrIdxBuffer(nnz);
unsigned char *arrIdx = arrIdxBuffer.get();
if (nullptr == arrIdx) {
return nullptr;
}
{
size_t bufLen = (size_t)(ceil(0.125 * iIdxNeedBits * nnz));
char *buf = (char *)MNNMemoryAllocAlignZeroAlign(bufLen * sizeof(char));
if (nullptr == buf) {
return nullptr;
}
StreamSizeRead(buf, 1, bufLen, myfile);
SplitBufToArray((uint8_t *)buf, (uint32_t)bufLen, (uint8_t *)arrIdx, (uint32_t)nnz, (uint32_t)iIdxNeedBits);
MNNMemoryFreeAlign(buf);
}
// 5. Avalable values Count(unsigned char)
StreamSizeRead(&ucMapSize, 1, 1, myfile);
// 6. valueset(signed char * valueset_size)
for (unsigned char i = 0; i < ucMapSize; i++) {
int8_t tmp;
StreamSizeRead(&tmp, 1, 1, myfile);
InsertSimpleSet(setWeight, tmp);
}
SimpleRank(setWeight->UniSet, setWeight->CurUniCnt, 1);
// map<unsigned char, signed char> mapWeight;
PSIMPLE_MAP mapWeight = CreateSimpleMap(256);
if (mapWeight == nullptr) {
return nullptr;
}
std::shared_ptr<unsigned int> __autoReleaseMapWeight(nullptr, [mapWeight](void *) { DestroySimpleMap(mapWeight); });
for (int i = 0; i < setWeight->CurUniCnt; i++) {
InsertMap(mapWeight, i, setWeight->UniSet[i]);
}
// unsigned char iIdx = 0;
// 7. none zero weights indexes(nnz*ceil(log2(Avalable_values_Count))/8)
AutoStorage<unsigned char> arrWeightIdxBuffer(nnz);
unsigned char *arrWeightIdx = arrWeightIdxBuffer.get();
if (nullptr == arrWeightIdx) {
return nullptr;
}
{
int iDataNeedBits = (int)ceil(_log2(ucMapSize));
size_t bufLen = (size_t)(ceil(0.125 * iDataNeedBits * nnz));
char *buf = (char *)MNNMemoryAllocAlignZeroAlign(bufLen * sizeof(char));
if (nullptr == buf) {
return nullptr;
}
StreamSizeRead(buf, 1, bufLen, myfile);
SplitBufToArray((uint8_t *)buf, (uint32_t)bufLen, (uint8_t *)arrWeightIdx, (uint32_t)nnz,
(uint32_t)iDataNeedBits);
MNNMemoryFreeAlign(buf);
}
// set blob data with idx and weight idx
{
memset(blob, 0, Size * sizeof(signed char));
int iPreIdx = 0;
for (int i = 0; i < nnz; i++) {
iPreIdx += arrIdx[i];
int found = 0;
int8_t value = FindInMap(mapWeight, arrWeightIdx[i], &found);
if (!found) {
MNN_ERROR("Read quan weights error with idx:%d\n", arrWeightIdx[i]);
MNNMemoryFreeAlign(blob);
return nullptr;
}
blob[iPreIdx] = value;
}
}
*len = Size;
return blob;
}
std::shared_ptr<ConvolutionCommon::Int8Common> ConvolutionCommon::load(const IDSTQuan *quan, bool forceFloat) {
auto result = std::make_shared<Int8Common>();
uint32_t weightLength = 0;
int8_t *buffer = nullptr;
auto originBuffer = (unsigned char *)quan->buffer()->data();
if (1 == quan->type()) {
buffer = ReadQuanData_c(originBuffer, &weightLength);
}
if (2 == quan->type()) {
buffer = ReadSparseQuanData_c(originBuffer, &weightLength);
}
// read fp16 data
if (3 == quan->type()) {
weightLength = quan->buffer()->size() / sizeof(half_float::half);
std::vector<int8_t> tempHalfWeight(quan->buffer()->size());
::memcpy(tempHalfWeight.data(), quan->buffer()->data(), quan->buffer()->size());
auto halfWeight = reinterpret_cast<half_float::half *>(tempHalfWeight.data());
result->weightFloat.reset(weightLength);
if (nullptr == result->weightFloat.get()) {
MNN_PRINT("Alloc memory error for extract fp16 back to float\n");
return nullptr;
}
std::transform(halfWeight, halfWeight + weightLength, result->weightFloat.get(),
[](half_float::half h) { return float(h); });
return result;
}
if (nullptr == buffer) {
MNN_PRINT("Alloc memory error for extract idst int8\n");
return nullptr;
}
result->weight.set(buffer, weightLength);
result->quan = quan;
result->alpha.reset(quan->alpha()->size());
if (nullptr == result->alpha.get()) {
MNN_PRINT("Alloc memory error for extract idst int8\n");
return nullptr;
}
::memcpy(result->alpha.get(), quan->alpha()->data(), quan->alpha()->size() * sizeof(float));
if (!quan->has_scaleInt() || forceFloat) {
// Back to float
result->weightFloat.reset(weightLength);
if (nullptr == result->weightFloat.get()) {
MNN_PRINT("Alloc memory error for extract idst int8/ Back to float\n");
return nullptr;
}
auto outputCount = result->alpha.size();
int partWeightSize = weightLength / outputCount;
for (int o = 0; o < outputCount; ++o) {
auto dstW = result->weightFloat.get() + o * partWeightSize;
auto srcW = result->weight.get() + o * partWeightSize;
float alpha = result->alpha.get()[o];
for (int j = 0; j < partWeightSize; ++j) {
dstW[j] = ((float)srcW[j]) * alpha * quan->quantScale();
}
}
result->weight.release();
result->alpha.release();
}
return result;
}
}