MNN/test/op/SoftmaxTest.cpp

230 lines
9.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// SoftmaxTest.cpp
// MNNTests
//
// Created by MNN on 2019/01/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Interpreter.hpp"
#include "MNNTestSuite.h"
#include "MNN_generated.h"
#include "Session.hpp"
#include "TensorUtils.hpp"
#include "TestUtils.h"
using namespace MNN;
static Interpreter *create(int axis, std::vector<int> shape) {
flatbuffers::FlatBufferBuilder fbb;
std::vector<flatbuffers::Offset<Op>> vec;
{
auto dims = fbb.CreateVector(shape);
InputBuilder ib(fbb);
ib.add_dims(dims);
auto input = ib.Finish();
auto name = fbb.CreateString("input");
auto iv = fbb.CreateVector(std::vector<int>({0}));
auto ov = fbb.CreateVector(std::vector<int>({0}));
OpBuilder builder(fbb);
builder.add_type(OpType_Input);
builder.add_name(name);
builder.add_inputIndexes(iv);
builder.add_outputIndexes(ov);
builder.add_main_type(OpParameter_Input);
builder.add_main(flatbuffers::Offset<void>(input.o));
vec.push_back(builder.Finish());
}
{
auto ab = AxisBuilder(fbb);
ab.add_axis(axis);
auto softmax = ab.Finish();
auto name = fbb.CreateString("softmax");
auto iv = fbb.CreateVector(std::vector<int>({0}));
auto ov = fbb.CreateVector(std::vector<int>({1}));
OpBuilder builder(fbb);
builder.add_type(OpType_Softmax);
builder.add_name(name);
builder.add_inputIndexes(iv);
builder.add_outputIndexes(ov);
builder.add_main_type(OpParameter_Axis);
builder.add_main(flatbuffers::Offset<void>(softmax.o));
vec.push_back(builder.Finish());
}
auto ops = fbb.CreateVector(vec);
auto names = fbb.CreateVectorOfStrings({"input", "output"});
NetBuilder builder(fbb);
builder.add_oplists(ops);
builder.add_tensorName(names);
fbb.Finish(builder.Finish());
return Interpreter::createFromBuffer((const char *)fbb.GetBufferPointer(), fbb.GetSize());
}
static Tensor *infer(const Interpreter *net, Session *session) {
net->runSession(session);
return net->getSessionOutputAll(session).begin()->second;
}
class SoftmaxDim4Test : public MNNTestCase {
public:
virtual ~SoftmaxDim4Test() = default;
virtual void run() {
for (int axis = 0; axis <= 3; axis++) {
for (int b = 1; b <= 1; b *= 2) { // 1
for (int c = 1; c <= 8; c *= 2) {
for (int h = 1; h <= 8; h *= 2) {
for (int w = 1; w <= 8; w *= 2) {
dispatch([&](MNNForwardType backend) -> void {
if (backend == MNN_FORWARD_CPU)
return;
// nets
auto net = create(axis, {b, c, h, w});
auto CPU = createSession(net, MNN_FORWARD_CPU);
auto GPU = createSession(net, backend);
if (!CPU || !GPU) {
delete net;
return;
}
// input/output
auto input = new Tensor(4);
{
input->buffer().dim[0].extent = b;
input->buffer().dim[1].extent = c;
input->buffer().dim[2].extent = h;
input->buffer().dim[3].extent = w;
TensorUtils::setLinearLayout(input);
input->buffer().host = (uint8_t *)malloc(input->size());
for (int i = 0; i < b * c * h * w; i++) {
input->host<float>()[i] = rand() % 255 / 255.f;
}
auto host = net->getSessionInput(CPU, NULL);
auto device = net->getSessionInput(GPU, NULL);
net->getBackend(CPU, host)->onCopyBuffer(input, host);
net->getBackend(GPU, device)->onCopyBuffer(input, device);
}
// infer
assert(TensorUtils::compareTensors(infer(net, GPU), infer(net, CPU), 0.01));
// clean up
free(input->buffer().host);
delete input;
delete net;
});
}
}
}
}
}
}
};
class SoftmaxDim3Test : public MNNTestCase {
public:
virtual ~SoftmaxDim3Test() = default;
virtual void run() {
for (int axis = 0; axis <= 2; axis++) {
for (int c = 1; c <= 1; c *= 2) { // 1
for (int h = 1; h <= 8; h *= 2) {
for (int w = 1; w <= 8; w *= 2) {
dispatch([&](MNNForwardType backend) -> void {
if (backend == MNN_FORWARD_CPU)
return;
// nets
auto net = create(axis, {c, h, w});
auto CPU = createSession(net, MNN_FORWARD_CPU);
auto GPU = createSession(net, backend);
if (!CPU || !GPU) {
delete net;
return;
}
// input/output
auto input = new Tensor(3);
{
input->buffer().dim[0].extent = c;
input->buffer().dim[1].extent = h;
input->buffer().dim[2].extent = w;
TensorUtils::setLinearLayout(input);
input->buffer().host = (uint8_t *)malloc(input->size());
for (int i = 0; i < c * h * w; i++) {
input->host<float>()[i] = rand() % 255 / 255.f;
}
auto host = net->getSessionInput(CPU, NULL);
auto device = net->getSessionInput(GPU, NULL);
net->getBackend(CPU, host)->onCopyBuffer(input, host);
net->getBackend(GPU, device)->onCopyBuffer(input, device);
}
// infer
assert(TensorUtils::compareTensors(infer(net, GPU), infer(net, CPU), 0.01));
// clean up
free(input->buffer().host);
delete input;
delete net;
});
}
}
}
}
}
};
class SoftmaxDim2Test : public MNNTestCase {
public:
virtual ~SoftmaxDim2Test() = default;
virtual void run() {
for (int axis = 0; axis <= 1; axis++) {
for (int h = 1; h <= 1; h *= 2) { // 1
for (int w = 1; w <= 8; w *= 2) {
dispatch([&](MNNForwardType backend) -> void {
if (backend == MNN_FORWARD_CPU)
return;
// nets
auto net = create(axis, {h, w});
auto CPU = createSession(net, MNN_FORWARD_CPU);
auto GPU = createSession(net, backend);
if (!CPU || !GPU) {
delete net;
return;
}
// input/output
auto input = new Tensor(2);
{
input->buffer().dim[0].extent = h;
input->buffer().dim[1].extent = w;
TensorUtils::setLinearLayout(input);
input->buffer().host = (uint8_t *)malloc(input->size());
for (int i = 0; i < h * w; i++) {
input->host<float>()[i] = rand() % 255 / 255.f;
}
auto host = net->getSessionInput(CPU, NULL);
auto device = net->getSessionInput(GPU, NULL);
net->getBackend(CPU, host)->onCopyBuffer(input, host);
net->getBackend(GPU, device)->onCopyBuffer(input, device);
}
// infer
assert(TensorUtils::compareTensors(infer(net, GPU), infer(net, CPU), 0.01));
// clean up
free(input->buffer().host);
delete input;
delete net;
});
}
}
}
}
};
MNNTestSuiteRegister(SoftmaxDim4Test, "op/softmax/dim4");
MNNTestSuiteRegister(SoftmaxDim3Test, "op/softmax/dim3");
MNNTestSuiteRegister(SoftmaxDim2Test, "op/softmax/dim2");