2021-03-12 18:41:50 +08:00
//
// ConvBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
# ifndef MNN_OPENCL_BUFFER_CLOSED
# include "ConvBufExecution.hpp"
# include "ConvBufWinograd.hpp"
2023-07-31 14:24:48 +08:00
# include "ConvSubgroupBufExecution.hpp"
2021-03-12 18:41:50 +08:00
# include "core/ConvolutionCommon.hpp"
2021-06-11 17:17:13 +08:00
# include "core/Backend.hpp"
# include "RasterBufExecution.hpp"
2021-03-12 18:41:50 +08:00
namespace MNN {
namespace OpenCL {
std : : pair < std : : vector < uint32_t > , uint32_t > ConvBufCommonExecution : : gws2dLwsTune ( const cl : : Kernel & kernel , const std : : vector < uint32_t > & gws , const std : : string & kernelName , const uint32_t maxWorkGroupSize ) {
MNN_ASSERT ( gws . size ( ) = = 2 ) ;
2023-04-27 15:11:05 +08:00
2021-03-12 18:41:50 +08:00
auto runtime = mOpenCLBackend - > getOpenCLRuntime ( ) ;
auto maxWorkItemSizes = runtime - > getMaxWorkItemSizes ( ) ;
MNN_ASSERT ( maxWorkItemSizes . size ( ) > = 2 ) ;
auto & tunedLws = runtime - > tunedLwsMap ( ) ;
std : : pair < std : : string , std : : vector < uint32_t > > info = std : : make_pair ( kernelName , gws ) ;
if ( tunedLws . find ( info ) ! = tunedLws . end ( ) ) {
//printf("ConvBuf2dGeneralLocalWS Found! gws:%d %d lws:%d %d\n", gws[0], gws[1], tunedLws[info][0], tunedLws[info][1]);
return tunedLws [ info ] ;
}
std : : vector < uint32_t > lws ( 3 , 1 ) ;
std : : vector < uint32_t > lws_prefer ( 3 , 1 ) ;
uint32_t min_cost = UINT_MAX ;
if ( runtime - > getCLTuneLevel ( ) = = Heavy ) {
while ( lws [ 1 ] < = gws [ 1 ] | | lws [ 1 ] < = 6 ) {
lws [ 0 ] = 1 ;
while ( lws [ 0 ] < = gws [ 0 ] | | lws [ 0 ] < = 6 ) {
if ( lws [ 0 ] < = maxWorkItemSizes [ 0 ] & & lws [ 1 ] < = maxWorkItemSizes [ 1 ] & & lws [ 0 ] * lws [ 1 ] < = maxWorkGroupSize ) {
cl : : Event event ;
std : : vector < uint32_t > internalGlobalWS ( 2 , 1 ) ;
for ( size_t i = 0 ; i < gws . size ( ) ; + + i ) {
internalGlobalWS [ i ] = ROUND_UP ( gws [ i ] , std : : max ( ( uint32_t ) 1 , lws [ i ] ) ) ;
}
cl_int res = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueNDRangeKernel (
kernel , cl : : NullRange ,
cl : : NDRange ( internalGlobalWS [ 0 ] , internalGlobalWS [ 1 ] ) ,
cl : : NDRange ( lws [ 0 ] , lws [ 1 ] ) ,
nullptr , & event ) ;
MNN_CHECK_CL_SUCCESS ( res , kernelName . c_str ( ) ) ;
int cost_time = ( int ) mOpenCLBackend - > getOpenCLRuntime ( ) - > getCostTime ( & event ) ;
if ( cost_time < min_cost ) {
min_cost = cost_time ;
lws_prefer [ 0 ] = lws [ 0 ] ;
lws_prefer [ 1 ] = lws [ 1 ] ;
}
}
2023-08-21 14:51:54 +08:00
lws [ 0 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
2023-08-21 14:51:54 +08:00
lws [ 1 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
} else if ( runtime - > getCLTuneLevel ( ) = = Wide ) {
while ( lws [ 1 ] < = gws [ 1 ] | | lws [ 1 ] < = 6 ) {
lws [ 0 ] = 1 ;
while ( lws [ 0 ] < = gws [ 0 ] | | lws [ 0 ] < = 6 ) {
if ( lws [ 0 ] < = maxWorkItemSizes [ 0 ] & & lws [ 1 ] < = maxWorkItemSizes [ 1 ] & & lws [ 0 ] * lws [ 1 ] < = maxWorkGroupSize ) {
cl : : Event event ;
std : : vector < uint32_t > internalGlobalWS ( 2 , 1 ) ;
for ( size_t i = 0 ; i < gws . size ( ) ; + + i ) {
internalGlobalWS [ i ] = ROUND_UP ( gws [ i ] , std : : max ( ( uint32_t ) 1 , lws [ i ] ) ) ;
}
cl_int res = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueNDRangeKernel (
kernel , cl : : NullRange ,
cl : : NDRange ( internalGlobalWS [ 0 ] , internalGlobalWS [ 1 ] ) ,
cl : : NDRange ( lws [ 0 ] , lws [ 1 ] ) ,
nullptr , & event ) ;
MNN_CHECK_CL_SUCCESS ( res , kernelName . c_str ( ) ) ;
int cost_time = ( int ) mOpenCLBackend - > getOpenCLRuntime ( ) - > getCostTime ( & event ) ;
if ( cost_time < min_cost ) {
min_cost = cost_time ;
lws_prefer [ 0 ] = lws [ 0 ] ;
lws_prefer [ 1 ] = lws [ 1 ] ;
}
}
do {
2023-08-21 14:51:54 +08:00
lws [ 0 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
while ( ( ( 2 * gws [ 0 ] ) % lws [ 0 ] > 1 ) & & ( lws [ 0 ] & ( lws [ 0 ] - 1 ) ) ! = 0 & & ( lws [ 0 ] < = gws [ 0 ] ) & & ( lws [ 0 ] > 6 ) ) ; //divisible powOfTwo lessThanSix
}
do {
2023-08-21 14:51:54 +08:00
lws [ 1 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
while ( ( ( 2 * gws [ 1 ] ) % lws [ 1 ] > 1 ) & & ( lws [ 1 ] & ( lws [ 1 ] - 1 ) ) ! = 0 & & ( lws [ 1 ] < = gws [ 1 ] ) & & ( lws [ 1 ] > 6 ) ) ; //divisible powOfTwo lessThanSix
}
} else if ( runtime - > getCLTuneLevel ( ) = = Normal ) {
while ( lws [ 1 ] < = gws [ 1 ] & & lws [ 1 ] < = 6 ) {
lws [ 0 ] = 1 ;
while ( lws [ 0 ] < = gws [ 0 ] | | lws [ 0 ] < = 6 ) {
if ( lws [ 0 ] < = maxWorkItemSizes [ 0 ] & & lws [ 1 ] < = maxWorkItemSizes [ 1 ] & & lws [ 0 ] * lws [ 1 ] < = maxWorkGroupSize ) {
cl : : Event event ;
std : : vector < uint32_t > internalGlobalWS ( 2 , 1 ) ;
for ( size_t i = 0 ; i < gws . size ( ) ; + + i ) {
internalGlobalWS [ i ] = ROUND_UP ( gws [ i ] , std : : max ( ( uint32_t ) 1 , lws [ i ] ) ) ;
}
cl_int res = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueNDRangeKernel (
kernel , cl : : NullRange ,
cl : : NDRange ( internalGlobalWS [ 0 ] , internalGlobalWS [ 1 ] ) ,
cl : : NDRange ( lws [ 0 ] , lws [ 1 ] ) ,
nullptr , & event ) ;
MNN_CHECK_CL_SUCCESS ( res , kernelName . c_str ( ) ) ;
int cost_time = ( int ) mOpenCLBackend - > getOpenCLRuntime ( ) - > getCostTime ( & event ) ;
if ( cost_time < min_cost ) {
min_cost = cost_time ;
lws_prefer [ 0 ] = lws [ 0 ] ;
lws_prefer [ 1 ] = lws [ 1 ] ;
}
}
do {
2023-08-21 14:51:54 +08:00
lws [ 0 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
while ( ( ( 2 * gws [ 0 ] ) % lws [ 0 ] > 1 ) & & ( lws [ 0 ] & ( lws [ 0 ] - 1 ) ) ! = 0 & & ( lws [ 0 ] < = gws [ 0 ] ) & & ( lws [ 0 ] > 6 ) ) ; //divisible powOfTwo lessThanSix
}
do {
2023-08-21 14:51:54 +08:00
lws [ 1 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
while ( ( ( 2 * gws [ 1 ] ) % lws [ 1 ] > 1 ) & & ( lws [ 1 ] & ( lws [ 1 ] - 1 ) ) ! = 0 & & ( lws [ 1 ] < = gws [ 1 ] ) & & ( lws [ 1 ] < = 6 ) ) ; //divisible powOfTwo lessThanSix
}
} else if ( runtime - > getCLTuneLevel ( ) = = Fast ) {
while ( lws [ 1 ] < = gws [ 1 ] & & lws [ 1 ] < = 6 ) {
lws [ 0 ] = 1 ;
while ( lws [ 0 ] < = gws [ 0 ] & & lws [ 0 ] < = 6 ) {
if ( lws [ 0 ] < = maxWorkItemSizes [ 0 ] & & lws [ 1 ] < = maxWorkItemSizes [ 1 ] & & lws [ 0 ] * lws [ 1 ] < = maxWorkGroupSize ) {
cl : : Event event ;
std : : vector < uint32_t > internalGlobalWS ( 2 , 1 ) ;
for ( size_t i = 0 ; i < gws . size ( ) ; + + i ) {
internalGlobalWS [ i ] = ROUND_UP ( gws [ i ] , std : : max ( ( uint32_t ) 1 , lws [ i ] ) ) ;
}
cl_int res = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueNDRangeKernel (
kernel , cl : : NullRange ,
cl : : NDRange ( internalGlobalWS [ 0 ] , internalGlobalWS [ 1 ] ) ,
cl : : NDRange ( lws [ 0 ] , lws [ 1 ] ) ,
nullptr , & event ) ;
MNN_CHECK_CL_SUCCESS ( res , kernelName . c_str ( ) ) ;
int cost_time = ( int ) mOpenCLBackend - > getOpenCLRuntime ( ) - > getCostTime ( & event ) ;
if ( cost_time < min_cost ) {
min_cost = cost_time ;
lws_prefer [ 0 ] = lws [ 0 ] ;
lws_prefer [ 1 ] = lws [ 1 ] ;
}
}
do {
2023-08-21 14:51:54 +08:00
lws [ 0 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
while ( ( ( 2 * gws [ 0 ] ) % lws [ 0 ] > 1 ) & & ( lws [ 0 ] & ( lws [ 0 ] - 1 ) ) ! = 0 & & ( lws [ 0 ] < = gws [ 0 ] ) & & ( lws [ 0 ] < = 6 ) ) ; //divisible powOfTwo lessThanSix
}
do {
2023-08-21 14:51:54 +08:00
lws [ 1 ] < < = 1 ;
2021-03-12 18:41:50 +08:00
}
while ( ( ( 2 * gws [ 1 ] ) % lws [ 1 ] > 1 ) & & ( lws [ 1 ] & ( lws [ 1 ] - 1 ) ) ! = 0 & & ( lws [ 1 ] < = gws [ 1 ] ) & & ( lws [ 1 ] < = 6 ) ) ; //divisible powOfTwo lessThanSix
}
} else if ( runtime - > getCLTuneLevel ( ) = = None ) {
// define not tune method to choose lws
if ( runtime - > getGpuMemType ( ) = = GpuMemObject : : IMAGE ) {
lws_prefer [ 0 ] = 8 ;
lws_prefer [ 1 ] = 4 ;
} else {
lws_prefer [ 0 ] = 0 ;
lws_prefer [ 1 ] = 0 ;
}
2023-03-20 11:32:29 +08:00
cl : : Event event ;
std : : vector < uint32_t > internalGlobalWS ( 2 , 1 ) ;
for ( size_t i = 0 ; i < gws . size ( ) ; + + i ) {
internalGlobalWS [ i ] = ROUND_UP ( gws [ i ] , std : : max ( ( uint32_t ) 1 , lws_prefer [ i ] ) ) ;
}
cl_int res = CL_SUCCESS ;
if ( lws_prefer [ 0 ] = = 0 | | lws_prefer [ 1 ] = = 0 ) {
res = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueNDRangeKernel (
kernel , cl : : NullRange , cl : : NDRange ( internalGlobalWS [ 0 ] , internalGlobalWS [ 1 ] ) , cl : : NullRange , nullptr , & event ) ;
} else {
res = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueNDRangeKernel (
kernel , cl : : NullRange , cl : : NDRange ( internalGlobalWS [ 0 ] , internalGlobalWS [ 1 ] ) , cl : : NDRange ( lws_prefer [ 0 ] , lws_prefer [ 1 ] ) , nullptr , & event ) ;
}
MNN_CHECK_CL_SUCCESS ( res , kernelName . c_str ( ) ) ;
min_cost = ( int ) mOpenCLBackend - > getOpenCLRuntime ( ) - > getCostTime ( & event ) ;
2021-03-12 18:41:50 +08:00
}
if ( tunedLws . find ( info ) = = tunedLws . end ( ) ) {
//printf("ConvBuf2dGeneralLocalWS %d Insert! gws:%d %d, lws:%d %d, time:%dus\n", (int)tunedLws.size(), gws[0], gws[1], lws_prefer[0], lws_prefer[1], min_cost);
tunedLws . insert ( std : : make_pair ( info , std : : make_pair ( lws_prefer , min_cost ) ) ) ;
}
return std : : make_pair ( lws_prefer , min_cost ) ;
}
ConvBufCommonExecution : : ConvBufCommonExecution ( const Convolution2D * conv2dParams , Backend * backend ) : Execution ( backend ) {
auto openclBackend = ( OpenCLBackend * ) backend ;
2021-06-11 17:17:13 +08:00
int biasSize = conv2dParams - > common ( ) - > outputCount ( ) ;
2023-04-27 15:11:05 +08:00
int buffer_size = ROUND_UP ( biasSize , 16 ) ; //pack to 16
2021-03-12 18:41:50 +08:00
if ( openclBackend - > getOpenCLRuntime ( ) - > isSupportedFP16 ( ) ) {
buffer_size * = sizeof ( half_float : : half ) ;
} else {
buffer_size * = sizeof ( float ) ;
}
2023-04-27 15:11:05 +08:00
mBias . reset ( Tensor : : createDevice < float > ( { 1 , 1 , 1 , ROUND_UP ( biasSize , 16 ) } ) ) ;
2021-03-12 18:41:50 +08:00
backend - > onAcquireBuffer ( mBias . get ( ) , Backend : : STATIC ) ;
cl : : Buffer & biasBuffer = openCLBuffer ( mBias . get ( ) ) ;
cl_int res ;
auto biasPtrCL = openclBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer (
biasBuffer , true , CL_MAP_WRITE , 0 , buffer_size , nullptr , nullptr , & res ) ;
if ( biasPtrCL ! = nullptr & & res = = CL_SUCCESS ) {
2021-06-11 17:17:13 +08:00
: : memset ( biasPtrCL , 0 , buffer_size ) ;
if ( nullptr ! = conv2dParams - > bias ( ) ) {
const float * biasDataPtr = conv2dParams - > bias ( ) - > data ( ) ;
if ( openclBackend - > getOpenCLRuntime ( ) - > isSupportedFP16 ( ) ) {
for ( int i = 0 ; i < biasSize ; i + + ) {
( ( half_float : : half * ) biasPtrCL ) [ i ] = ( half_float : : half ) ( biasDataPtr [ i ] ) ;
}
} else {
: : memcpy ( biasPtrCL , biasDataPtr , biasSize * sizeof ( float ) ) ;
2021-03-12 18:41:50 +08:00
}
}
} else {
MNN_ERROR ( " Map error biasPtrCL == nullptr \n " ) ;
}
openclBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( biasBuffer , biasPtrCL ) ;
}
ConvBufCommonExecution : : ~ ConvBufCommonExecution ( ) {
MNN_ASSERT ( nullptr ! = mBias ) ;
backend ( ) - > onReleaseBuffer ( mBias . get ( ) , Backend : : STATIC ) ;
}
void ConvBufExecution : : setConv1x1WeightBuffer ( int packCout , int packCin , const float * filterDataPtr ) {
cl_int res ;
std : : shared_ptr < Tensor > filterBuffer ( Tensor : : createDevice < float > ( { ROUND_UP ( mOutputChannel , 8 ) /*Cout pack set to max 8*/ , ROUND_UP ( mInputChannel , packCin ) , mKernelWidth , mKernelHeight } ) ) ;
int buffer_size = filterBuffer - > elementSize ( ) ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > isSupportedFP16 ( ) ) {
buffer_size * = sizeof ( half_float : : half ) ;
} else {
buffer_size * = sizeof ( float ) ;
}
mKernelBuffer . reset ( new cl : : Buffer ( mOpenCLBackend - > getOpenCLRuntime ( ) - > context ( ) , CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR , buffer_size ) ) ;
auto kernelBufferPtr = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( * ( mKernelBuffer . get ( ) ) , true , CL_MAP_WRITE , 0 , buffer_size , nullptr , nullptr , & res ) ;
if ( kernelBufferPtr ! = nullptr & & res = = CL_SUCCESS ) {
: : memset ( kernelBufferPtr , 0 , buffer_size ) ;
for ( int o = 0 ; o < mOutputChannel ; o + + ) {
for ( int i = 0 ; i < mInputChannel ; i + + ) {
int bufferIdx = ( o / packCout ) * ROUND_UP ( mInputChannel , packCin ) * packCout + ( i / packCin ) * packCin * packCout + ( o % packCout ) * packCin + ( i % packCin ) ; //(Co/packCout, Ci/packCin, packCout, packCin)
int filterIdx = o * mInputChannel + i ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > isSupportedFP16 ( ) ) {
( ( half_float : : half * ) kernelBufferPtr ) [ bufferIdx ] = ( half_float : : half ) ( filterDataPtr [ filterIdx ] ) ;
} else {
( ( float * ) kernelBufferPtr ) [ bufferIdx ] = ( float ) ( filterDataPtr [ filterIdx ] ) ;
}
}
}
} else {
MNN_ERROR ( " Map error ptrCL == nullptr \n " ) ;
MNN_ASSERT ( false ) ;
}
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( * ( mKernelBuffer . get ( ) ) , kernelBufferPtr ) ;
}
2021-06-11 17:17:13 +08:00
void ConvBufExecution : : _generateFilterConvertRegion ( Tensor * virtualFilter , Tensor * originBuffer ) const {
auto filterDes = TensorUtils : : getDescribe ( virtualFilter ) ;
filterDes - > regions . clear ( ) ;
for ( int so = 0 ; so < 4 ; + + so ) {
int oSize = ( mOutputChannel - so + 3 ) / 4 ;
if ( oSize < = 0 ) {
continue ;
}
Tensor : : InsideDescribe : : Region slice ;
slice . origin = originBuffer ;
slice . size [ 0 ] = oSize ;
slice . size [ 1 ] = mInputChannel ;
slice . size [ 2 ] = mKernelWidth * mKernelHeight ;
slice . src . stride [ 0 ] = mInputChannel * mKernelWidth * mKernelHeight * 4 ;
slice . src . stride [ 1 ] = mKernelWidth * mKernelHeight ;
slice . src . stride [ 2 ] = 1 ;
slice . src . offset = so * mInputChannel * mKernelWidth * mKernelHeight ;
slice . dst . stride [ 0 ] = mKernelWidth * mKernelHeight * 4 ;
slice . dst . stride [ 1 ] = mKernelWidth * mKernelHeight * UP_DIV ( mOutputChannel , 4 ) * 4 ;
slice . dst . stride [ 2 ] = 4 ;
slice . dst . offset = so ;
filterDes - > regions . emplace_back ( std : : move ( slice ) ) ;
}
}
2021-03-12 18:41:50 +08:00
ConvBufExecution : : ConvBufExecution ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs , const MNN : : Op * op , Backend * backend )
: ConvBufCommonExecution ( op - > main_as_Convolution2D ( ) , backend ) {
# ifdef LOG_VERBOSE
MNN_PRINT ( " Start ConvExecution init ! \n " ) ;
# endif
mOpenCLBackend = static_cast < OpenCLBackend * > ( backend ) ;
const auto * conv2dParams = op - > main_as_Convolution2D ( ) ;
const auto * conv2dCommonParams = conv2dParams - > common ( ) ;
mConv2dParams = conv2dParams ;
mConv2dCommonParams = conv2dCommonParams ;
mStrides = { conv2dCommonParams - > strideY ( ) , conv2dCommonParams - > strideX ( ) } ;
mDilations = { conv2dCommonParams - > dilateY ( ) , conv2dCommonParams - > dilateX ( ) } ;
auto padding = ConvolutionCommon : : convolutionPad ( inputs [ 0 ] , outputs [ 0 ] , mConv2dCommonParams ) ;
mPaddings [ 0 ] = padding . second ; //padY
mPaddings [ 1 ] = padding . first ; //padX
mKernelWidth = conv2dCommonParams - > kernelX ( ) ;
mKernelHeight = conv2dCommonParams - > kernelY ( ) ;
mOutputChannel = conv2dCommonParams - > outputCount ( ) ;
std : : string kernelName = " conv_2d_c4h1w4 " ;
2021-06-11 17:17:13 +08:00
mInputChannel = inputs [ 0 ] - > channel ( ) ;
2021-09-02 15:35:16 +08:00
std : : shared_ptr < ConvolutionCommon : : Int8Common > quanCommon ;
2021-06-11 17:17:13 +08:00
if ( inputs . size ( ) ! = 1 ) {
// Multi - Input
mConv1x1Opt = false ;
2022-12-30 15:18:58 +08:00
mRasterExe . reset ( new RasterBufExecution ( { mFilter . get ( ) } , op , mOpenCLBackend ) ) ;
2021-06-11 17:17:13 +08:00
} else {
int weightSize = 0 ;
ConvolutionCommon : : getConvParameters ( & quanCommon , conv2dParams , & mFilterDataPtr , & weightSize ) ;
//select opt conv method
mConv1x1Opt = ( mKernelHeight = = mKernelWidth & & mKernelHeight = = 1 & & mPaddings [ 0 ] = = 0 & &
mPaddings [ 1 ] = = 0 & & mStrides [ 0 ] = = 1 & & mStrides [ 1 ] = = 1 & & inputs [ 0 ] - > width ( ) > = 4 ) ;
}
2023-07-31 14:24:48 +08:00
if ( mConv1x1Opt ) {
//At first, set packCout equal to 4
setConv1x1WeightBuffer ( 4 , 4 , mFilterDataPtr ) ;
kernelName = " conv_2d_1x1_c4h1w4 " ;
} else {
mFilter . reset (
Tensor : : createDevice < float > ( { ROUND_UP ( mOutputChannel , 4 ) * ROUND_UP ( mInputChannel , 4 ) * mKernelWidth * mKernelHeight } ) ) ;
2023-04-27 15:11:05 +08:00
if ( mFilterDataPtr ! = nullptr ) {
2023-07-31 14:24:48 +08:00
std : : vector < int > filterImageShape { ROUND_UP ( mInputChannel , 4 ) , ( UP_DIV ( mOutputChannel , 4 ) * mKernelWidth * mKernelHeight ) } ;
std : : shared_ptr < Tensor > filterBuffer (
Tensor : : createDevice < float > ( { mOutputChannel , ROUND_UP ( mInputChannel , 4 ) , mKernelWidth , mKernelHeight } ) ) ;
int buffer_size = filterBuffer - > elementSize ( ) ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > isWeightCpuTransHalf ( ) ) {
2023-04-27 15:11:05 +08:00
buffer_size * = sizeof ( half_float : : half ) ;
} else {
buffer_size * = sizeof ( float ) ;
}
2023-07-31 14:24:48 +08:00
cl : : Buffer filterBufferCL ( mOpenCLBackend - > getOpenCLRuntime ( ) - > context ( ) , CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR , buffer_size ) ;
filterBuffer - > buffer ( ) . device = ( uint64_t ) ( & filterBufferCL ) ;
cl_int res ;
auto ptrCL = mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueMapBuffer ( filterBufferCL , true , CL_MAP_WRITE , 0 , buffer_size , nullptr , nullptr , & res ) ;
if ( ptrCL ! = nullptr & & res = = CL_SUCCESS ) {
: : memset ( ptrCL , 0 , buffer_size ) ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > isWeightCpuTransHalf ( ) ) {
for ( int oc = 0 ; oc < mOutputChannel ; oc + + ) {
for ( int ic = 0 ; ic < mInputChannel ; ic + + ) {
for ( int kh = 0 ; kh < mKernelHeight ; kh + + ) {
for ( int kw = 0 ; kw < mKernelWidth ; kw + + ) {
int dst_idx = ( ( oc * ROUND_UP ( mInputChannel , 4 ) + ic ) * mKernelHeight + kh ) * mKernelWidth + kw ;
int src_idx = ( ( oc * mInputChannel + ic ) * mKernelHeight + kh ) * mKernelWidth + kw ;
( ( half_float : : half * ) ptrCL ) [ dst_idx ] = ( half_float : : half ) ( mFilterDataPtr [ src_idx ] ) ;
}
}
}
}
} else {
const int copy_size = mKernelWidth * mKernelHeight * sizeof ( float ) ;
for ( int oc = 0 ; oc < mOutputChannel ; oc + + ) {
for ( int ic = 0 ; ic < mInputChannel ; ic + + ) {
: : memcpy ( ( float * ) ptrCL + ( oc * ROUND_UP ( mInputChannel , 4 ) + ic ) * mKernelWidth * mKernelHeight , mFilterDataPtr + ( oc * mInputChannel + ic ) * mKernelWidth * mKernelHeight , copy_size ) ;
}
2023-04-27 15:11:05 +08:00
}
}
2023-07-31 14:24:48 +08:00
} else {
MNN_ERROR ( " Map error ptrCL == nullptr \n " ) ;
2023-04-27 15:11:05 +08:00
}
2023-07-31 14:24:48 +08:00
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueUnmapMemObject ( filterBufferCL , ptrCL ) ;
2023-04-27 15:11:05 +08:00
2023-07-31 14:24:48 +08:00
mFilter . reset ( Tensor : : createDevice < float > ( { 1 , filterImageShape [ 1 ] , 1 , 4 * filterImageShape [ 0 ] } ) ) ;
mOpenCLBackend - > onAcquireBuffer ( mFilter . get ( ) , Backend : : STATIC ) ;
MNN : : OpenCL : : BufferConvertor bufferConvertor { mOpenCLBackend - > getOpenCLRuntime ( ) } ;
bool needTrans = false ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > isWeightCpuTransHalf ( ) = = false ) {
needTrans = true ;
2021-06-11 17:17:13 +08:00
}
2023-07-31 14:24:48 +08:00
bufferConvertor . convertToNC4HW4Buffer ( filterBuffer . get ( ) , MNN : : OpenCL : : CONV2D_FILTER , mFilter . get ( ) , needTrans ) ;
2021-03-12 18:41:50 +08:00
}
}
// Create Kernel
if ( mConv2dCommonParams - > relu ( ) ) {
mBuildOptions . emplace ( " -DRELU " ) ;
} else if ( mConv2dCommonParams - > relu6 ( ) ) {
mBuildOptions . emplace ( " -DRELU6 " ) ;
}
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName , mBuildOptions ) ;
mMaxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( mKernel ) ) ;
2021-06-11 17:17:13 +08:00
2021-03-12 18:41:50 +08:00
# ifdef LOG_VERBOSE
MNN_PRINT ( " end ConvExecution init ! \n " ) ;
# endif
}
ConvBufExecution : : ~ ConvBufExecution ( ) {
2022-12-30 15:18:58 +08:00
// Do nothing
2021-03-12 18:41:50 +08:00
}
ErrorCode ConvBufExecution : : onResize ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs ) {
# ifdef LOG_VERBOSE
MNN_PRINT ( " Start ConvExecution onResize ! \n " ) ;
# endif
auto input = inputs [ 0 ] ;
auto output = outputs [ 0 ] ;
2021-06-11 17:17:13 +08:00
if ( inputs . size ( ) > 1 ) {
// Multi Input, need pretreat
2022-12-30 15:18:58 +08:00
_generateFilterConvertRegion ( mFilter . get ( ) , inputs [ 1 ] ) ;
2021-06-11 17:17:13 +08:00
bool res = backend ( ) - > onAcquireBuffer ( mFilter . get ( ) , Backend : : DYNAMIC ) ;
if ( ! res ) {
return OUT_OF_MEMORY ;
}
2022-12-30 15:18:58 +08:00
mRasterExe - > onResize ( { } , { mFilter . get ( ) } ) ;
2021-06-11 17:17:13 +08:00
}
2021-03-12 18:41:50 +08:00
std : : vector < int > inputShape = tensorShapeFormat ( input ) ;
std : : vector < int > outputShape = tensorShapeFormat ( output ) ;
const int height = outputShape . at ( 1 ) ;
const int width = outputShape . at ( 2 ) ;
const int outChannel = outputShape . at ( 3 ) ;
const int inputHeight = inputShape . at ( 1 ) ;
const int inputWidth = inputShape . at ( 2 ) ;
const int inputChannels = inputShape . at ( 3 ) ;
const int inputChannelBlocks = UP_DIV ( inputChannels , 4 ) ;
auto padding = ConvolutionCommon : : convolutionPad ( input , output , mConv2dCommonParams ) ;
mPaddings [ 0 ] = padding . second ; //padY
mPaddings [ 1 ] = padding . first ; //padX
2023-04-27 15:11:05 +08:00
2023-03-20 11:32:29 +08:00
std : : string info = std : : to_string ( inputChannels ) + " _ " + std : : to_string ( mKernelHeight ) + " _ " + std : : to_string ( mKernelWidth ) + " _ " + std : : to_string ( mStrides [ 0 ] ) + " _ " + std : : to_string ( mStrides [ 1 ] ) + " _ " + std : : to_string ( mDilations [ 0 ] ) + " _ " + std : : to_string ( mDilations [ 1 ] ) ;
2023-07-31 14:24:48 +08:00
if ( mConv1x1Opt ) {
2023-04-27 15:11:05 +08:00
2021-03-12 18:41:50 +08:00
// {"conv_2d_1x1_c4h1w4", "conv_2d_1x1_c4h1w2", "conv_2d_1x1_c4h1w1", "conv_2d_1x1_c8h1w4"};
const int total_kernel = 5 ;
std : : string kernelName [ total_kernel ] = { " conv_2d_1x1_c4h1w4 " , " conv_2d_1x1_c4h1w2 " , " conv_2d_1x1_c4h1w1 " , " conv_2d_1x1_c8h1w4 " , " conv_2d_1x1_c8h1w2 " } ;
int itemC [ total_kernel ] = { 4 , 4 , 4 , 8 , 8 } ;
int itemW [ total_kernel ] = { 4 , 2 , 1 , 4 , 2 } ;
int c8_index_start = 3 ;
int actual_kernel = total_kernel ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getCLTuneLevel ( ) = = Normal ) {
actual_kernel = 2 ;
kernelName [ 0 ] = " conv_2d_1x1_c4h1w1 " ;
itemC [ 0 ] = 4 ;
itemW [ 0 ] = 1 ;
kernelName [ 1 ] = " conv_2d_1x1_c8h1w2 " ;
itemC [ 1 ] = 8 ;
itemW [ 1 ] = 2 ;
c8_index_start = 1 ;
} else if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getCLTuneLevel ( ) = = Fast | | mOpenCLBackend - > getOpenCLRuntime ( ) - > getCLTuneLevel ( ) = = None ) {
actual_kernel = 1 ;
2023-07-31 14:24:48 +08:00
kernelName [ 0 ] = " conv_2d_1x1_c4h1w1 " ;
itemC [ 0 ] = 4 ;
itemW [ 0 ] = 1 ;
2021-03-12 18:41:50 +08:00
}
cl : : Kernel kernel [ total_kernel ] ;
std : : vector < uint32_t > globalWorkSize [ total_kernel ] ;
std : : vector < uint32_t > localWorkSize [ total_kernel ] ;
std : : pair < int , int > min_cost ( INT_MAX , 0 ) ; //(min_time, min_index)
for ( int knl_idx = 0 ; knl_idx < actual_kernel ; knl_idx + + ) {
2023-08-21 14:51:54 +08:00
std : : set < std : : string > buildOption = mBuildOptions ;
if ( outputShape . at ( 3 ) % itemC [ knl_idx ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ knl_idx ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
kernel [ knl_idx ] = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ knl_idx ] , buildOption ) ;
2021-03-12 18:41:50 +08:00
uint32_t maxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( kernel [ knl_idx ] ) ) ;
uint32_t idx = 0 ;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS ;
2021-03-12 18:41:50 +08:00
globalWorkSize [ knl_idx ] = { static_cast < uint32_t > ( UP_DIV ( outputShape . at ( 3 ) , itemC [ knl_idx ] ) * UP_DIV ( outputShape . at ( 2 ) , itemW [ knl_idx ] ) ) , static_cast < uint32_t > ( outputShape . at ( 0 ) * outputShape . at ( 1 ) ) } ;
2023-07-31 14:24:48 +08:00
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 0 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 1 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( width , itemW [ knl_idx ] ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , * mKernelBuffer . get ( ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mBias . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , static_cast < int > ( inputChannelBlocks ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , height ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , width ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg Conv1x1Buf Kernel Select " ) ;
2021-03-12 18:41:50 +08:00
std : : pair < std : : vector < uint32_t > , int > retTune ;
retTune = gws2dLwsTune ( kernel [ knl_idx ] , globalWorkSize [ knl_idx ] , kernelName [ knl_idx ] , maxWorkGroupSize ) ;
//printf("cov1x1 %d, %d\n", knl_idx, retTune.second);
if ( min_cost . first > retTune . second ) {
min_cost . first = retTune . second ;
min_cost . second = knl_idx ;
mLocalWorkSize = { retTune . first [ 0 ] , retTune . first [ 1 ] } ;
}
}
2021-09-02 15:35:16 +08:00
std : : shared_ptr < ConvolutionCommon : : Int8Common > quanCommon ;
2021-03-12 18:41:50 +08:00
int min_index = min_cost . second ;
if ( min_index > = c8_index_start ) { //if best kernel is "conv_2d_1x1_c8h1w4", set weight packCout to 8
int weightSize = 0 ;
ConvolutionCommon : : getConvParameters ( & quanCommon , mConv2dParams , & mFilterDataPtr , & weightSize ) ;
setConv1x1WeightBuffer ( 8 , 4 , mFilterDataPtr ) ;
}
mGlobalWorkSize = { globalWorkSize [ min_index ] [ 0 ] , globalWorkSize [ min_index ] [ 1 ] } ;
2023-08-21 14:51:54 +08:00
std : : set < std : : string > buildOption = mBuildOptions ;
if ( outputShape . at ( 3 ) % itemC [ min_index ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ min_index ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ min_index ] , buildOption ) ;
2023-07-31 14:24:48 +08:00
uint32_t idx = 0 ;
cl_int ret = CL_SUCCESS ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 0 ] ) ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 1 ] ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( width , itemW [ min_index ] ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = mKernel . setArg ( idx + + , * mKernelBuffer . get ( ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mBias . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = mKernel . setArg ( idx + + , static_cast < int > ( inputChannelBlocks ) ) ;
ret | = mKernel . setArg ( idx + + , height ) ;
ret | = mKernel . setArg ( idx + + , width ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg Conv1x1Buf " ) ;
2021-03-12 18:41:50 +08:00
//printf("conv1x1 %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outChannel, width);
} else {
int inputImageShape [ 2 ] = { inputHeight , inputWidth } ;
int outputImageShape [ 2 ] = { height , width } ;
int kernelShape [ 2 ] = { mKernelHeight , mKernelWidth } ;
int strideShape [ 2 ] = { mStrides [ 0 ] , mStrides [ 1 ] } ;
int paddingShape [ 2 ] = { mPaddings [ 0 ] , mPaddings [ 1 ] } ;
int dilationShape [ 2 ] = { mDilations [ 0 ] , mDilations [ 1 ] } ;
2023-03-20 11:32:29 +08:00
// {"conv_2d_c4h1w2", "conv_2d_c4h1w1", "conv_2d_c8h1w1", "conv_2d_c4h1w4", "conv_2d_c8h2w1", "conv_2d_c4h4w1"};
2023-08-21 14:51:54 +08:00
const int total_kernel = 7 ;
std : : string kernelName [ total_kernel ] = { " conv_2d_c4h1w1 " , " conv_2d_c4h1w2 " , " conv_2d_c4h4w1 " , " conv_2d_c8h2w1 " , " conv_2d_c8h4w1 " , " conv_2d_c4h1w4 " , " conv_2d_c8h1w4 " } ;
int itemC [ total_kernel ] = { 4 , 4 , 4 , 8 , 8 , 4 , 8 } ;
int itemH [ total_kernel ] = { 1 , 1 , 4 , 2 , 4 , 1 , 1 } ;
int itemW [ total_kernel ] = { 1 , 2 , 1 , 1 , 1 , 4 , 4 } ;
2021-03-12 18:41:50 +08:00
int actual_kernel = total_kernel ;
2023-08-21 14:51:54 +08:00
2023-03-20 11:32:29 +08:00
2021-03-12 18:41:50 +08:00
cl : : Kernel kernel [ total_kernel ] ;
std : : vector < uint32_t > globalWorkSize [ total_kernel ] ;
std : : vector < uint32_t > localWorkSize [ total_kernel ] ;
std : : pair < int , int > min_cost ( INT_MAX , 0 ) ; //(min_time, min_index)
for ( int knl_idx = 0 ; knl_idx < actual_kernel ; knl_idx + + ) {
2023-08-21 14:51:54 +08:00
std : : set < std : : string > buildOption = mBuildOptions ;
if ( outputShape . at ( 3 ) % itemC [ knl_idx ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ knl_idx ] ) ! = 0 | | ( outputShape . at ( 1 ) % itemH [ knl_idx ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
kernel [ knl_idx ] = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ knl_idx ] , buildOption ) ;
2021-03-12 18:41:50 +08:00
uint32_t maxWorkGroupSize = static_cast < uint32_t > ( mOpenCLBackend - > getOpenCLRuntime ( ) - > getMaxWorkGroupSize ( kernel [ knl_idx ] ) ) ;
2023-03-20 11:32:29 +08:00
globalWorkSize [ knl_idx ] = { static_cast < uint32_t > ( UP_DIV ( outputShape . at ( 3 ) , itemC [ knl_idx ] ) * UP_DIV ( outputShape . at ( 2 ) , itemW [ knl_idx ] ) ) , static_cast < uint32_t > ( outputShape . at ( 0 ) * UP_DIV ( outputShape . at ( 1 ) , itemH [ knl_idx ] ) ) } ;
2021-03-12 18:41:50 +08:00
uint32_t idx = 0 ;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 0 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , globalWorkSize [ knl_idx ] [ 1 ] ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mFilter . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( mBias . get ( ) ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( inputImageShape ) , inputImageShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , inputChannels ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , inputChannelBlocks ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( outputImageShape ) , outputImageShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( kernelShape ) , kernelShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( strideShape ) , strideShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( paddingShape ) , paddingShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , sizeof ( dilationShape ) , dilationShape ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( width , itemW [ knl_idx ] ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
ret | = kernel [ knl_idx ] . setArg ( idx + + , UP_DIV ( height , itemH [ knl_idx ] ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg ConvBuf Kernel Select " ) ;
2021-03-12 18:41:50 +08:00
std : : pair < std : : vector < uint32_t > , int > retTune ;
2023-03-20 11:32:29 +08:00
retTune = gws2dLwsTune ( kernel [ knl_idx ] , globalWorkSize [ knl_idx ] , kernelName [ knl_idx ] + info , maxWorkGroupSize ) ;
2021-03-12 18:41:50 +08:00
if ( min_cost . first > retTune . second ) {
min_cost . first = retTune . second ;
min_cost . second = knl_idx ;
mLocalWorkSize = { retTune . first [ 0 ] , retTune . first [ 1 ] } ;
}
}
int min_index = min_cost . second ;
mGlobalWorkSize = { globalWorkSize [ min_index ] [ 0 ] , globalWorkSize [ min_index ] [ 1 ] } ;
2023-08-21 14:51:54 +08:00
std : : set < std : : string > buildOption = mBuildOptions ;
if ( outputShape . at ( 3 ) % itemC [ min_index ] ! = 0 ) {
buildOption . emplace ( " -DCHANNEL_LEAVE " ) ;
}
if ( ( outputShape . at ( 2 ) % itemW [ min_index ] ) ! = 0 | | ( outputShape . at ( 1 ) % itemH [ min_index ] ) ! = 0 ) {
buildOption . emplace ( " -DBLOCK_LEAVE " ) ;
}
mKernel = mOpenCLBackend - > getOpenCLRuntime ( ) - > buildKernel ( " conv_2d_buf " , kernelName [ min_index ] , buildOption ) ;
2021-03-12 18:41:50 +08:00
uint32_t idx = 0 ;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 0 ] ) ;
ret | = mKernel . setArg ( idx + + , mGlobalWorkSize [ 1 ] ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( input ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mFilter . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( mBias . get ( ) ) ) ;
ret | = mKernel . setArg ( idx + + , openCLBuffer ( output ) ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( inputImageShape ) , inputImageShape ) ;
ret | = mKernel . setArg ( idx + + , inputChannels ) ;
ret | = mKernel . setArg ( idx + + , inputChannelBlocks ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( outputImageShape ) , outputImageShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( kernelShape ) , kernelShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( strideShape ) , strideShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( paddingShape ) , paddingShape ) ;
ret | = mKernel . setArg ( idx + + , sizeof ( dilationShape ) , dilationShape ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( width , itemW [ min_index ] ) ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( outChannel , 4 ) ) ;
ret | = mKernel . setArg ( idx + + , UP_DIV ( height , itemH [ min_index ] ) ) ;
MNN_CHECK_CL_SUCCESS ( ret , " setArg ConvBuf " ) ;
2021-03-12 18:41:50 +08:00
}
2021-06-11 17:17:13 +08:00
if ( inputs . size ( ) > 1 ) {
backend ( ) - > onReleaseBuffer ( mFilter . get ( ) , Backend : : DYNAMIC ) ;
}
2021-03-12 18:41:50 +08:00
# ifdef LOG_VERBOSE
MNN_PRINT ( " end ConvExecution onResize ! \n " ) ;
# endif
return NO_ERROR ;
}
ErrorCode ConvBufExecution : : onExecute ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs ) {
# ifdef LOG_VERBOSE
MNN_PRINT ( " Start ConvExecution onExecute ! \n " ) ;
# endif
2021-06-11 17:17:13 +08:00
if ( inputs . size ( ) > 1 ) {
2022-12-30 15:18:58 +08:00
mRasterExe - > onExecute ( { } , { mFilter . get ( ) } ) ;
if ( inputs . size ( ) > 2 ) {
auto buffer_size = inputs [ 2 ] - > elementSize ( ) ;
if ( mOpenCLBackend - > getOpenCLRuntime ( ) - > isSupportedFP16 ( ) ) {
buffer_size * = sizeof ( half_float : : half ) ;
} else {
buffer_size * = sizeof ( float ) ;
}
mOpenCLBackend - > getOpenCLRuntime ( ) - > commandQueue ( ) . enqueueCopyBuffer ( openCLBuffer ( inputs [ 2 ] ) , openCLBuffer ( mBias . get ( ) ) , 0 , 0 , buffer_size ) ;
}
2021-06-11 17:17:13 +08:00
}
2021-03-12 18:41:50 +08:00
# ifdef ENABLE_OPENCL_TIME_PROFILER
2023-07-31 14:24:48 +08:00
cl : : Event event ;
runKernel2D ( mKernel , mGlobalWorkSize , mLocalWorkSize , mOpenCLBackend - > getOpenCLRuntime ( ) , & event ) ;
2023-08-31 15:31:45 +08:00
mOpenCLBackend - > getOpenCLRuntime ( ) - > pushEvent ( { " ConvBuf2D " , event } ) ;
2021-03-12 18:41:50 +08:00
# else
2023-07-31 14:24:48 +08:00
runKernel2D ( mKernel , mGlobalWorkSize , mLocalWorkSize , mOpenCLBackend - > getOpenCLRuntime ( ) ) ;
2021-03-12 18:41:50 +08:00
# endif
# ifdef LOG_VERBOSE
MNN_PRINT ( " end ConvExecution onExecute ! \n " ) ;
# endif
return NO_ERROR ;
}
class ConvolutionBufCreator : public OpenCLBackend : : Creator {
public :
virtual ~ ConvolutionBufCreator ( ) = default ;
virtual Execution * onCreate ( const std : : vector < Tensor * > & inputs , const std : : vector < Tensor * > & outputs ,
const MNN : : Op * op , Backend * backend ) const override {
if ( nullptr ! = op - > main_as_Convolution2D ( ) - > quanParameter ( ) ) {
auto quan = op - > main_as_Convolution2D ( ) - > quanParameter ( ) ;
if ( 1 = = quan - > type ( ) | | 2 = = quan - > type ( ) ) {
2021-06-11 17:17:13 +08:00
if ( quan - > has_scaleInt ( ) ) {
// Don't support IDST-int8 because of error
return nullptr ;
}
2021-03-12 18:41:50 +08:00
}
}
2021-06-11 17:17:13 +08:00
if ( inputs . size ( ) > 1 ) {
// Multi inputs
2023-07-31 14:24:48 +08:00
for ( int i = 0 ; i < inputs . size ( ) ; + + i ) {
TensorUtils : : setTensorSupportPack ( inputs [ i ] , false ) ;
}
for ( int i = 0 ; i < outputs . size ( ) ; + + i ) {
TensorUtils : : setTensorSupportPack ( outputs [ i ] , false ) ;
}
2021-06-11 17:17:13 +08:00
return new ConvBufExecution ( inputs , outputs , op , backend ) ;
}
2023-07-31 14:24:48 +08:00
auto conv2D = op - > main_as_Convolution2D ( ) ;
auto input = inputs [ 0 ] ;
auto output = outputs [ 0 ] ;
auto padding = ConvolutionCommon : : convolutionPad ( inputs [ 0 ] , outputs [ 0 ] , conv2D - > common ( ) ) ;
std : : vector < int > inputShape = tensorShapeFormat ( input ) ;
std : : vector < int > outputShape = tensorShapeFormat ( output ) ;
const int outputChannel = outputShape . at ( 3 ) ;
const int inputChannels = inputShape . at ( 3 ) ;
2023-04-27 15:11:05 +08:00
if ( ConvBufWinograd : : valid ( conv2D - > common ( ) , inputs [ 0 ] , outputs [ 0 ] , static_cast < OpenCLBackend * > ( backend ) - > getOpenCLRuntime ( ) - > getGpuType ( ) = = INTEL ) ) {
2023-07-31 14:24:48 +08:00
std : : vector < int > inputShape = tensorShapeFormat ( input ) ;
std : : vector < int > outputShape = tensorShapeFormat ( output ) ;
const int src_width = inputShape . at ( 2 ) ;
const int dst_width = outputShape . at ( 2 ) ;
int pad_right = ( UP_DIV ( dst_width , 2 ) - 1 ) * 2 + 3 - padding . first - src_width + 1 ;
TensorUtils : : setTensorPad ( input , padding . first , pad_right , 0 , 0 ) ;
TensorUtils : : setTensorChannelPack ( input , 16 ) ;
2021-03-12 18:41:50 +08:00
return new ConvBufWinograd ( conv2D , backend ) ;
}
2023-07-31 14:24:48 +08:00
# ifdef MNN_SUPPORT_INTEL_SUBGROUP
if ( static_cast < OpenCLBackend * > ( backend ) - > getOpenCLRuntime ( ) - > isSupportedIntelSubgroup ( ) & & outputChannel > = 16 ) {
if ( inputChannels > = 16 ) {
auto pads = ConvolutionCommon : : convolutionPadFull ( inputs [ 0 ] , outputs [ 0 ] , conv2D - > common ( ) ) ;
TensorUtils : : setTensorPad ( inputs [ 0 ] , std : : get < 0 > ( pads ) , std : : get < 2 > ( pads ) , 0 , 0 ) ;
TensorUtils : : setTensorChannelPack ( inputs [ 0 ] , 16 ) ;
}
return new ConvSubgroupBuf ( inputs , outputs , op , backend ) ;
}
# endif /* MNN_SUPPORT_INTEL_SUBGROUP */
for ( int i = 0 ; i < inputs . size ( ) ; + + i ) {
TensorUtils : : setTensorSupportPack ( inputs [ i ] , false ) ;
}
for ( int i = 0 ; i < outputs . size ( ) ; + + i ) {
TensorUtils : : setTensorSupportPack ( outputs [ i ] , false ) ;
}
2021-03-12 18:41:50 +08:00
return new ConvBufExecution ( inputs , outputs , op , backend ) ;
}
} ;
OpenCLCreatorRegister < ConvolutionBufCreator > __convBuf_op ( OpType_Convolution , BUFFER ) ;
} // namespace OpenCL
} // namespace MNN
# endif /* MNN_OPENCL_BUFFER_CLOSED */