MNN/source/backend/opencl/execution/buffer/PoolBufExecution.cpp

273 lines
10 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// PoolBufExecution.cpp
2019-04-17 10:49:11 +08:00
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/PoolBufExecution.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
#include "backend/opencl/core/OpenCLBackend.hpp"
2019-04-17 10:49:11 +08:00
namespace MNN {
namespace OpenCL {
PoolBufExecution::PoolBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
2019-04-17 10:49:11 +08:00
: Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mPoolParams = op->main_as_Pool();
mPoolType = mPoolParams->type();
mStrides[0] = mPoolParams->strideY();
mStrides[1] = mPoolParams->strideX();
mKernels[0] = mPoolParams->kernelY();
mKernels[1] = mPoolParams->kernelX();
mPaddings[0] = mPoolParams->padY() * 2;
mPaddings[1] = mPoolParams->padX() * 2;
mPadType = mPoolParams->padType();
if (mPadType == PoolPadType_VALID) {
mPaddings[0] = 0;
mPaddings[1] = 0;
}
2023-07-31 14:24:48 +08:00
if (inputs[0]->channel() >= 16) {
TensorUtils::setTensorChannelPack(inputs[0], 16);
}
2019-04-17 10:49:11 +08:00
}
ErrorCode PoolBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("start PoolBufExecution onResize !\n");
2019-04-17 10:49:11 +08:00
#endif
auto input = inputs[0];
auto output = outputs[0];
2023-07-31 14:24:48 +08:00
auto runtime = mOpenCLBackend->getOpenCLRuntime();
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
if (runtime->isSupportedIntelSubgroup()) {
return SubgrouponResize(inputs, outputs);
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
2019-04-17 10:49:11 +08:00
if (mPoolParams->isGlobal()) {
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
mKernels = {inputShape.at(1), inputShape.at(2)};
mStrides = {inputShape.at(1), inputShape.at(2)};
mPaddings = {0, 0};
}
if (mPadType == PoolPadType_SAME) {
int padNeededHeight = std::max(0, (output->height() - 1) * mStrides[0] + mKernels[0] - input->height());
int padNeededWidth = std::max(0, (output->width() - 1) * mStrides[1] + mKernels[1] - input->width());
2019-04-17 10:49:11 +08:00
mPaddings[0] = padNeededHeight;
mPaddings[1] = padNeededWidth;
}
MNN_ASSERT(mDilations[0] == 1 && mDilations[1] == 1);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int batch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int channels = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
int channelBlocks = (channels + 3) / 4;
std::set<std::string> buildOptions;
std::string kernelName = "pooling";
2019-04-17 10:49:11 +08:00
if (mPoolType == PoolType_AVEPOOL) {
buildOptions.emplace("-DPOOL_AVG");
}
mKernel = runtime->buildKernel("pooling_buf", kernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
2019-04-17 10:49:11 +08:00
mGlobalWorkSize = {
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
static_cast<uint32_t>(channelBlocks),
2019-04-17 10:49:11 +08:00
};
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
2019-04-17 10:49:11 +08:00
int paddingShape[2] = {mPaddings[0] / 2, mPaddings[1] / 2};
int strideShape[2] = {mStrides[0], mStrides[1]};
int kernelShape[2] = {mKernels[0], mKernels[1]};
uint32_t idx = 0;
2023-07-31 14:24:48 +08:00
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLBuffer(input));
ret |= mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= mKernel.setArg(idx++, sizeof(strideShape), strideShape);
ret |= mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
ret |= mKernel.setArg(idx++, openCLBuffer(output));
ret |= mKernel.setArg(idx++, channelBlocks);
MNN_CHECK_CL_SUCCESS(ret, "setArg PoolBufExecution");
std::string kernelNameTune = "pooling_buf";
mLocalWorkSize =
localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelNameTune, mKernel).first;
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("end PoolBufExecution onResize !\n");
2019-04-17 10:49:11 +08:00
#endif
return NO_ERROR;
}
2023-07-31 14:24:48 +08:00
#ifdef MNN_SUPPORT_INTEL_SUBGROUP
ErrorCode PoolBufExecution::SubgrouponResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start PoolBufExecution onResize !\n");
#endif
auto input = inputs[0];
auto output = outputs[0];
if (mPoolParams->isGlobal()) {
std::vector<int> inputShape = tensorShapeFormat(inputs[0]);
mKernels = {inputShape.at(1), inputShape.at(2)};
mStrides = {inputShape.at(1), inputShape.at(2)};
mPaddings = {0, 0};
}
if (mPadType == PoolPadType_SAME) {
int padNeededHeight = std::max(0, (output->height() - 1) * mStrides[0] + mKernels[0] - input->height());
int padNeededWidth = std::max(0, (output->width() - 1) * mStrides[1] + mKernels[1] - input->width());
mPaddings[0] = padNeededHeight;
mPaddings[1] = padNeededWidth;
}
MNN_ASSERT(mDilations[0] == 1 && mDilations[1] == 1);
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int batch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int channels = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
int input_c_pack = TensorUtils::getTensorChannelPack(input);
int output_c_pack = TensorUtils::getTensorChannelPack(output);
auto inputpad = TensorUtils::getDescribe(input)->mPads;
auto outputpad = TensorUtils::getDescribe(output)->mPads;
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
int paddingShape[2] = {mPaddings[0] / 2, mPaddings[1] / 2};
int strideShape[2] = {mStrides[0], mStrides[1]};
int kernelShape[2] = {mKernels[0], mKernels[1]};
int in_channel_block = UP_DIV(channels, input_c_pack);
int out_channel_block = UP_DIV(channels, output_c_pack);
std::set<std::string> buildOptions;
std::string KernelName = "pooling_c" + std::to_string(input_c_pack) + "_c" + std::to_string(output_c_pack);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
if (mPoolType == PoolType_AVEPOOL) {
buildOptions.emplace("-DPOOL_AVG");
}
int input_line_size = mStrides[1] * (8 - 1) + mKernels[1];
buildOptions.emplace("-DINPUT_LINE_SIZE=" + std::to_string(input_line_size));
if (channels % 16 != 0) {
buildOptions.emplace("-DOUTPUT_LEFTOVERS=" + std::to_string(1));
}
buildOptions.emplace("-DSTRIDE_Y=" + std::to_string(strideShape[0]));
buildOptions.emplace("-DSTRIDE_X=" + std::to_string(strideShape[1]));
buildOptions.emplace("-DKERNEL_Y=" + std::to_string(kernelShape[0]));
buildOptions.emplace("-DKERNEL_X=" + std::to_string(kernelShape[1]));
mKernel = runtime->buildKernel("pooling_subgroup_buf", KernelName, buildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
mGlobalWorkSize = {
static_cast<uint32_t>(ROUND_UP(channels, 16)),
static_cast<uint32_t>(UP_DIV(outputWidth, 8)),
static_cast<uint32_t>(batch * outputHeight),
};
if (input_c_pack == 4) {
mGlobalWorkSize = {
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
static_cast<uint32_t>(UP_DIV(channels, 4)),
};
}
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= mKernel.setArg(idx++, mGlobalWorkSize[0]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[1]);
ret |= mKernel.setArg(idx++, mGlobalWorkSize[2]);
ret |= mKernel.setArg(idx++, openCLBuffer(input));
ret |= mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
ret |= mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
ret |= mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
ret |= mKernel.setArg(idx++, openCLBuffer(output));
ret |= mKernel.setArg(idx++, channels);
ret |= mKernel.setArg(idx++, in_channel_block);
ret |= mKernel.setArg(idx++, out_channel_block);
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(inputpad.left));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(inputpad.right));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(outputpad.left));
ret |= mKernel.setArg(idx++, static_cast<uint32_t>(outputpad.right));
MNN_CHECK_CL_SUCCESS(ret, "setArg PoolBufExecution SubGroup");
std::string kernelNameTune = "pooling_subgroup_buf";
if (input_c_pack == 16) {
mLocalWorkSize = {16, 1, 1};
} else {
mLocalWorkSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelNameTune, mKernel).first;
}
#ifdef LOG_VERBOSE
MNN_PRINT("end PoolBufExecution onResize !\n");
#endif
return NO_ERROR;
}
#endif /* MNN_SUPPORT_INTEL_SUBGROUP */
ErrorCode PoolBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("start PoolBufExecution onExecute !\n");
2019-04-17 10:49:11 +08:00
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(), &event);
mOpenCLBackend->getOpenCLRuntime()->pushEvent({"Pooling", event});
#else
run3DKernelDefault(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
2019-04-17 10:49:11 +08:00
#ifdef LOG_VERBOSE
MNN_PRINT("end PoolBufExecution onExecute !\n");
2019-04-17 10:49:11 +08:00
#endif
return NO_ERROR;
}
OpenCLCreatorRegister<TypedCreator<PoolBufExecution>> __PoolBuf_op(OpType_Pooling, BUFFER);
2019-04-17 10:49:11 +08:00
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */