2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUQuantizedLogistic.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/12/12.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
#ifdef MNN_SUPPORT_TFLITE_QUAN
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUQuantizedLogistic.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "backend/cpu/CPUFixedPoint.hpp"
|
|
|
|
#include "backend/cpu/CPUQuantizationUtils.hpp"
|
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "backend/cpu/compute/OptimizedComputer.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUQuantizedLogistic::CPUQuantizedLogistic(Backend *backend, const Op *op) : Execution(backend) {
|
|
|
|
mLogisticParam = op->main_as_QuantizedLogistic();
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUQuantizedLogistic::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
|
|
MNN_ASSERT(1 == inputs.size() && 1 == outputs.size());
|
|
|
|
MNN_ASSERT(0 == mLogisticParam->outputQuantizedParam()->zeroPoint() &&
|
|
|
|
1. / 256 == mLogisticParam->outputQuantizedParam()->scale());
|
|
|
|
|
|
|
|
static constexpr int kInputIntegerBits = 4;
|
|
|
|
const double inputRealMultiplier =
|
|
|
|
mLogisticParam->inputQuantizedParam()->scale() * static_cast<double>(1 << (31 - kInputIntegerBits));
|
|
|
|
QuantizeMultiplierGreaterThanOne(inputRealMultiplier, &mInputMultiplier, &mInputLeftShift);
|
2020-07-02 17:46:16 +08:00
|
|
|
mInputZeroPoint = mLogisticParam->inputQuantizedParam()->zeroPoint();
|
2019-04-17 10:49:11 +08:00
|
|
|
mInputRangeRadius = CalculateInputRadius(kInputIntegerBits, mInputLeftShift);
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorCode CPUQuantizedLogistic::onExecute(const std::vector<MNN::Tensor *> &inputs,
|
|
|
|
const std::vector<MNN::Tensor *> &outputs) {
|
|
|
|
auto input = inputs[0], output = outputs[0];
|
|
|
|
std::vector<int> inputDims, outputDims;
|
|
|
|
for (int i = 0; i < input->buffer().dimensions; i++) {
|
|
|
|
inputDims.push_back(input->buffer().dim[i].extent);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < output->buffer().dimensions; i++) {
|
|
|
|
outputDims.push_back(output->buffer().dim[i].extent);
|
|
|
|
}
|
|
|
|
|
2020-07-02 17:46:16 +08:00
|
|
|
Optimized::Logistic(input->host<uint8_t>(), inputDims, mInputZeroPoint,
|
2019-04-17 10:49:11 +08:00
|
|
|
mInputRangeRadius, mInputMultiplier, mInputLeftShift, output->host<uint8_t>(), outputDims);
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUQuantizedLogisticCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
|
|
const MNN::Op *op, Backend *backend) const {
|
|
|
|
return new CPUQuantizedLogistic(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUQuantizedLogisticCreator, OpType_QuantizedLogistic);
|
|
|
|
} // namespace MNN
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
#endif
|