MNN/source/backend/coreml/execution/CoreMLPool.cpp

75 lines
3.4 KiB
C++
Raw Normal View History

//
// CoreMLPool.cpp
// MNN
//
// Created by MNN on 2021/03/25.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CoreMLPool.hpp"
namespace MNN {
CoreMLPool::CoreMLPool(MNN::Backend *b, const MNN::Op *op, const std::vector<Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) : CoreMLCommonExecution(b, op) {
initLayer();
}
ErrorCode CoreMLPool::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(inputs.size() == 1 && outputs.size() == 1);
auto pool = mOp->main_as_Pool();
auto strideX = pool->strideX();
auto strideY = pool->strideY();
auto kernelX = pool->kernelX();
auto kernelY = pool->kernelY();
auto padMod = pool->padType();
auto global = pool->isGlobal();
mLayer_->pooling = mCoreMLBackend->create<CoreML__Specification__PoolingLayerParams>();
mLayer_->layer_case = CORE_ML__SPECIFICATION__NEURAL_NETWORK_LAYER__LAYER_POOLING;
core_ml__specification__pooling_layer_params__init(mLayer_->pooling);
mLayer_->pooling->globalpooling = global;
mLayer_->pooling->n_stride = 2;
mLayer_->pooling->stride = mCoreMLBackend->create<uint64_t>(mLayer_->pooling->n_stride);
mLayer_->pooling->stride[0] = strideY;
mLayer_->pooling->stride[1] = strideX;
mLayer_->pooling->n_kernelsize = 2;
mLayer_->pooling->kernelsize = mCoreMLBackend->create<uint64_t>(mLayer_->pooling->n_kernelsize);
mLayer_->pooling->kernelsize[0] = kernelY;
mLayer_->pooling->kernelsize[1] = kernelX;
switch (padMod) {
case PoolPadType_SAME:
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_SAME;
mLayer_->pooling->same = mCoreMLBackend->create<CoreML__Specification__SamePadding>();
core_ml__specification__same_padding__init(mLayer_->pooling->same);
break;
case PoolPadType_VALID:
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_VALID;
mLayer_->pooling->valid = mCoreMLBackend->create<CoreML__Specification__ValidPadding>();
core_ml__specification__valid_padding__init(mLayer_->pooling->valid);
break;
case PoolPadType_CAFFE:
// TODO: deal caffe pad mode
mLayer_->pooling->pooling_padding_type_case = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_PADDING_TYPE_INCLUDE_LAST_PIXEL;
mLayer_->pooling->includelastpixel = mCoreMLBackend->create<CoreML__Specification__PoolingLayerParams__ValidCompletePadding>();
core_ml__specification__pooling_layer_params__valid_complete_padding__init(mLayer_->pooling->includelastpixel);
break;
default:
break;
}
if (pool->type() == PoolType_AVEPOOL) {
mLayer_->pooling->type = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_TYPE__AVERAGE;
mLayer_->pooling->avgpoolexcludepadding = true;
} else {
mLayer_->pooling->type = CORE_ML__SPECIFICATION__POOLING_LAYER_PARAMS__POOLING_TYPE__MAX;
}
setLayerInputsAndOutputs(mLayer_, {mCoreMLBackend->getTensorName(inputs[0])}, {mCoreMLBackend->getTensorName(outputs[0])});
mCoreMLBackend->addLayer(mLayer_);
return NO_ERROR;
}
CoreMLCreatorRegister<TypedCreator<CoreMLPool>> __pool_op(OpType_Pooling);
} // namespace MNN