2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeStridedSlice.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUStridedSlice.hpp"
|
|
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "core/SizeComputer.hpp"
|
|
|
|
#include "core/TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
class StridedSliceComputer : public SizeComputer {
|
|
|
|
public:
|
|
|
|
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
|
|
|
|
const std::vector<Tensor *> &outputs) const override {
|
|
|
|
MNN_ASSERT(4 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
2019-12-27 22:16:57 +08:00
|
|
|
|
2019-04-17 10:49:11 +08:00
|
|
|
Tensor *input = inputs[0];
|
|
|
|
const int inputDimension = input->buffer().dimensions;
|
- build:
- unify schema building in core and converter;
- add more build script for android;
- add linux build script for python;
- ops impl:
- add floor mod support in binary;
- use eltwise impl in add/max/sub/mul binary for optimization;
- remove fake double support in cast;
- fix 5d support for concat;
- add adjX and adjY support for batch matmul;
- optimize conv2d back prop filter;
- add pad mode support for conv3d;
- fix bug in conv2d & conv depthwise with very small feature map;
- optimize binary without broacast;
- add data types support for gather;
- add gather ND support;
- use uint8 data type in gather v2;
- add transpose support for matmul;
- add matrix band part;
- add dim != 4 support for padding, reshape & tensor convert;
- add pad type support for pool3d;
- make ops based on TensorFlow Lite quantization optional;
- add all & any support for reduction;
- use type in parameter as output type in reduction;
- add int support for unary;
- add variable weight support for conv2d;
- fix conv2d depthwise weights initialization;
- fix type support for transpose;
- fix grad outputs count for reduce grad and reshape grad;
- fix priorbox & detection output;
- fix metal softmax error;
- python:
- add runSessionWithCallBackInfo interface;
- add max nodes limit (1400) for visualization tool;
- fix save error in python3;
- align default dim;
- convert:
- add extra design for optimization;
- add more post converting optimizers;
- add caffe v1 weights blob support;
- add cast, unary, conv transpose support for onnx model;
- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
- add cos/sin/atan/tan support for unary for tensorflow model;
- add any/all support for reduction for tensorflow model;
- add elu, conv3d, pool3d support for tensorflow model;
- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
- fix size computer lock;
- fix thread pool deadlock;
- add express & parameters in express;
- rewrite blitter chooser without static map;
- add tests for expr;
2019-10-29 13:37:26 +08:00
|
|
|
if (inputDimension <= 0) {
|
|
|
|
return false;
|
|
|
|
}
|
2019-06-05 10:45:59 +08:00
|
|
|
if (inputDimension >= 5) {
|
|
|
|
MNN_ERROR("Error for StridedSliceComputer: inputDimension>=5: %d\n", inputDimension);
|
|
|
|
return false;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
// input haven't realized
|
|
|
|
auto output = outputs[0];
|
|
|
|
auto parameter = op->main_as_StridedSliceParam();
|
|
|
|
|
|
|
|
Tensor *begin = inputs[1];
|
|
|
|
Tensor *end = inputs[2];
|
|
|
|
Tensor *strided = inputs[3];
|
|
|
|
|
|
|
|
std::shared_ptr<Tensor> tempBegin;
|
|
|
|
std::shared_ptr<Tensor> tempEnd;
|
|
|
|
std::shared_ptr<Tensor> tempStrided;
|
|
|
|
|
|
|
|
// copy data from device to host if needed
|
|
|
|
if (!begin->host<int32_t>() && begin->deviceId()) {
|
|
|
|
tempBegin.reset(Tensor::createHostTensorFromDevice(begin, true));
|
|
|
|
begin = tempBegin.get();
|
|
|
|
}
|
|
|
|
if (!end->host<int32_t>() && end->deviceId()) {
|
|
|
|
tempEnd.reset(Tensor::createHostTensorFromDevice(end, true));
|
|
|
|
end = tempEnd.get();
|
|
|
|
}
|
|
|
|
if (!strided->host<int32_t>() && strided->deviceId()) {
|
|
|
|
tempStrided.reset(Tensor::createHostTensorFromDevice(strided, true));
|
|
|
|
strided = tempStrided.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
MNN_ASSERT(begin->buffer().dimensions == end->buffer().dimensions &&
|
|
|
|
begin->buffer().dimensions == strided->buffer().dimensions);
|
|
|
|
|
|
|
|
std::vector<int32_t> inputShape(input->buffer().dimensions);
|
|
|
|
for (int i = 0; i < input->buffer().dimensions; i++) {
|
|
|
|
inputShape[i] = input->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
|
|
|
|
int stridedSliceDimension = begin->buffer().dim[0].extent;
|
|
|
|
|
|
|
|
std::vector<int32_t> beginShape(stridedSliceDimension);
|
|
|
|
std::vector<int32_t> endShape(stridedSliceDimension);
|
|
|
|
std::vector<int32_t> stridedShape(stridedSliceDimension);
|
|
|
|
std::vector<int32_t> outputShape;
|
|
|
|
std::vector<int32_t> outputShapeShrinked;
|
|
|
|
|
|
|
|
std::vector<int32_t> beginMask(stridedSliceDimension);
|
|
|
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
|
|
|
beginMask[i] = parameter->beginMask() & (1 << i);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int32_t> endMask(stridedSliceDimension);
|
|
|
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
|
|
|
endMask[i] = parameter->endMask() & (1 << i);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int32_t> shrinkAxisMask(stridedSliceDimension);
|
|
|
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
|
|
|
shrinkAxisMask[i] = parameter->shrinkAxisMask() & (1 << i);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ellipsisMaskNonZeroBitPosition = 0;
|
|
|
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
|
|
|
int temp = parameter->ellipsisMask() & (1 << i);
|
|
|
|
if (temp != 0) {
|
|
|
|
ellipsisMaskNonZeroBitPosition = i; // only one non-zero bit is allowed in ellipsisMask
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int32_t> newAxisMask(stridedSliceDimension);
|
|
|
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
|
|
|
newAxisMask[i] = parameter->newAxisMask() & (1 << i);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (parameter->ellipsisMask() != 0 || parameter->newAxisMask() != 0) {
|
|
|
|
MNN_ASSERT(false); // TODO: do not support these two mask now
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < stridedSliceDimension; i++) {
|
|
|
|
if (beginMask[i] > 0) {
|
|
|
|
beginShape[i] = 0;
|
|
|
|
} else {
|
|
|
|
beginShape[i] = std::min(inputShape[i], begin->host<int32_t>()[i]);
|
|
|
|
}
|
|
|
|
if (beginShape[i] < 0) {
|
|
|
|
beginShape[i] += input->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
MNN_ASSERT(beginShape[i] >= 0);
|
|
|
|
endShape[i] = endMask[i] > 0
|
|
|
|
? inputShape[i]
|
|
|
|
: (end->host<int32_t>()[i] > inputShape[i] ? inputShape[i] : end->host<int32_t>()[i]);
|
|
|
|
if (endShape[i] < 0) {
|
|
|
|
endShape[i] += input->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
MNN_ASSERT(endShape[i] >= 0);
|
|
|
|
stridedShape[i] = shrinkAxisMask[i] > 0 ? 1 : strided->host<int32_t>()[i];
|
|
|
|
|
|
|
|
if (endShape[i] < beginShape[i]) {
|
|
|
|
int t = beginShape[i];
|
|
|
|
beginShape[i] = endShape[i];
|
|
|
|
endShape[i] = t;
|
|
|
|
|
|
|
|
MNN_ASSERT(stridedShape[i] != 0);
|
|
|
|
if (stridedShape[i] < 0) {
|
|
|
|
stridedShape[i] = -stridedShape[i];
|
|
|
|
} else {
|
|
|
|
// MNN_ASSERT(false); // TODO: should be the wrong case, but there is one in linfeng's faster
|
|
|
|
// rcnn face model
|
|
|
|
beginShape[i] = endShape[i]; // TODO: temp solution
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (shrinkAxisMask[i] == 0) {
|
|
|
|
int size = (endShape[i] - beginShape[i] - 1) / stridedShape[i] + 1;
|
|
|
|
outputShape.push_back(size);
|
|
|
|
outputShapeShrinked.push_back(size);
|
|
|
|
} else {
|
|
|
|
outputShape.push_back(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int outputDimensionsWithoutRemain = (int)outputShape.size();
|
|
|
|
int dimensionRemained = input->buffer().dimensions - stridedSliceDimension;
|
|
|
|
|
|
|
|
for (int i = 0; i < dimensionRemained; i++) {
|
|
|
|
outputShape.push_back(input->buffer().dim[outputDimensionsWithoutRemain + i].extent);
|
|
|
|
outputShapeShrinked.push_back(input->buffer().dim[outputDimensionsWithoutRemain + i].extent);
|
|
|
|
}
|
|
|
|
|
|
|
|
output->buffer().dimensions = (int)outputShapeShrinked.size();
|
|
|
|
output->buffer().type = input->buffer().type;
|
|
|
|
output->buffer().dim[0].extent = 1;
|
|
|
|
|
|
|
|
for (int i = 0; i < outputShapeShrinked.size(); i++) {
|
|
|
|
output->buffer().dim[i].extent = outputShapeShrinked[i];
|
|
|
|
}
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2019-08-22 20:13:46 +08:00
|
|
|
REGISTER_SHAPE_INPUTS(StridedSliceComputer, OpType_StridedSlice, (std::vector<int>{1,2,3}));
|
2019-04-17 10:49:11 +08:00
|
|
|
} // namespace MNN
|