mirror of https://github.com/alibaba/MNN.git
108 lines
4.2 KiB
C++
108 lines
4.2 KiB
C++
|
//
|
||
|
// CPUQuantizedAvgPool.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2018/08/14.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "CPUQuantizedAvgPool.hpp"
|
||
|
#include "CPUBackend.hpp"
|
||
|
#include "CPUQuantizationUtils.hpp"
|
||
|
#include "CommonOptFunction.h"
|
||
|
#include "Macro.h"
|
||
|
#include "OptimizedComputer.hpp"
|
||
|
|
||
|
namespace MNN {
|
||
|
|
||
|
CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) {
|
||
|
auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool();
|
||
|
mIstflite = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE);
|
||
|
mKernelWidth = CPUQuantizedAvgPool->kernelX();
|
||
|
mKernelHeight = CPUQuantizedAvgPool->kernelY();
|
||
|
mPadWidth = CPUQuantizedAvgPool->padX();
|
||
|
mPadHeight = CPUQuantizedAvgPool->padY();
|
||
|
mStrideWidth = CPUQuantizedAvgPool->strideX();
|
||
|
mStrideHeight = CPUQuantizedAvgPool->strideY();
|
||
|
mPadMode = CPUQuantizedAvgPool->padType();
|
||
|
mOutputActivationMin = CPUQuantizedAvgPool->outputActivationMin();
|
||
|
mOutputActivationMax = CPUQuantizedAvgPool->outputActivationMax();
|
||
|
}
|
||
|
|
||
|
ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
||
|
if (!mIstflite) {
|
||
|
MNN_ASSERT(inputs.size() == 3);
|
||
|
MNN_ASSERT(outputs.size() == 3);
|
||
|
mOutputActivationMin = 0;
|
||
|
mOutputActivationMax = 255;
|
||
|
const float minInput = inputs[1]->host<float>()[0];
|
||
|
const float maxInput = inputs[2]->host<float>()[0];
|
||
|
((float *)outputs[1]->buffer().host)[0] = minInput;
|
||
|
((float *)outputs[2]->buffer().host)[0] = maxInput;
|
||
|
}
|
||
|
|
||
|
auto input = inputs[0];
|
||
|
auto output = outputs[0];
|
||
|
|
||
|
MNN_ASSERT(input->buffer().dimensions == 4);
|
||
|
|
||
|
// input : nhwc
|
||
|
const int32_t inBatch = input->buffer().dim[0].extent;
|
||
|
const int32_t inRows = input->buffer().dim[1].extent;
|
||
|
const int32_t inCols = input->buffer().dim[2].extent;
|
||
|
const int32_t inChannel = input->buffer().dim[3].extent;
|
||
|
|
||
|
int32_t padRows = mPadHeight;
|
||
|
int32_t padCols = mPadWidth;
|
||
|
const int32_t windowRows = mKernelHeight;
|
||
|
const int32_t windowCols = mKernelWidth;
|
||
|
const int32_t rowStride = mStrideHeight;
|
||
|
const int32_t colStride = mStrideWidth;
|
||
|
const int32_t outHeight = output->buffer().dim[1].extent;
|
||
|
const int32_t outWidth = output->buffer().dim[2].extent;
|
||
|
|
||
|
switch (mPadMode) {
|
||
|
case PoolPadType_CAFFE:
|
||
|
MNN_ASSERT(false);
|
||
|
break;
|
||
|
case PoolPadType_VALID:
|
||
|
padRows = padCols = 0;
|
||
|
break;
|
||
|
case PoolPadType_SAME:
|
||
|
auto widthNeeded = (outWidth - 1) * colStride + windowCols - inCols;
|
||
|
auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
|
||
|
mPadWidth = widthNeeded > 0 ? widthNeeded / 2 : 0;
|
||
|
mPadHeight = heightNeeded > 0 ? heightNeeded / 2 : 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
uint8_t *inputPtr = (uint8_t *)input->buffer().host;
|
||
|
uint8_t *outputPtr = (uint8_t *)output->buffer().host;
|
||
|
|
||
|
std::vector<int> inputDims;
|
||
|
inputDims.push_back(inBatch);
|
||
|
inputDims.push_back(inRows);
|
||
|
inputDims.push_back(inCols);
|
||
|
inputDims.push_back(inChannel);
|
||
|
|
||
|
std::vector<int> outputDims;
|
||
|
outputDims.push_back(output->length(0));
|
||
|
outputDims.push_back(output->length(1));
|
||
|
outputDims.push_back(output->length(2));
|
||
|
outputDims.push_back(output->length(3));
|
||
|
Optimized::AveragePool(inputPtr, inputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth,
|
||
|
mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, outputDims);
|
||
|
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator {
|
||
|
public:
|
||
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
||
|
const MNN::Op *op, Backend *backend) const {
|
||
|
return new CPUQuantizedAvgPool(backend, op);
|
||
|
}
|
||
|
};
|
||
|
REGISTER_CPU_OP_CREATOR(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool);
|
||
|
} // namespace MNN
|