MNN/source/backend/cpu/CPUQuantizedAvgPool.cpp

108 lines
4.2 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUQuantizedAvgPool.cpp
// MNN
//
// Created by MNN on 2018/08/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUQuantizedAvgPool.hpp"
#include "CPUBackend.hpp"
#include "CPUQuantizationUtils.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
#include "OptimizedComputer.hpp"
namespace MNN {
CPUQuantizedAvgPool::CPUQuantizedAvgPool(Backend *backend, const Op *CPUQuantizedAvgPoolOp) : Execution(backend) {
auto CPUQuantizedAvgPool = CPUQuantizedAvgPoolOp->main_as_QuantizedAvgPool();
mIstflite = (CPUQuantizedAvgPool->modelFormat() == ModeFormat_TFLITE);
mKernelWidth = CPUQuantizedAvgPool->kernelX();
mKernelHeight = CPUQuantizedAvgPool->kernelY();
mPadWidth = CPUQuantizedAvgPool->padX();
mPadHeight = CPUQuantizedAvgPool->padY();
mStrideWidth = CPUQuantizedAvgPool->strideX();
mStrideHeight = CPUQuantizedAvgPool->strideY();
mPadMode = CPUQuantizedAvgPool->padType();
mOutputActivationMin = CPUQuantizedAvgPool->outputActivationMin();
mOutputActivationMax = CPUQuantizedAvgPool->outputActivationMax();
}
ErrorCode CPUQuantizedAvgPool::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
if (!mIstflite) {
MNN_ASSERT(inputs.size() == 3);
MNN_ASSERT(outputs.size() == 3);
mOutputActivationMin = 0;
mOutputActivationMax = 255;
const float minInput = inputs[1]->host<float>()[0];
const float maxInput = inputs[2]->host<float>()[0];
((float *)outputs[1]->buffer().host)[0] = minInput;
((float *)outputs[2]->buffer().host)[0] = maxInput;
}
auto input = inputs[0];
auto output = outputs[0];
MNN_ASSERT(input->buffer().dimensions == 4);
// input : nhwc
const int32_t inBatch = input->buffer().dim[0].extent;
const int32_t inRows = input->buffer().dim[1].extent;
const int32_t inCols = input->buffer().dim[2].extent;
const int32_t inChannel = input->buffer().dim[3].extent;
int32_t padRows = mPadHeight;
int32_t padCols = mPadWidth;
const int32_t windowRows = mKernelHeight;
const int32_t windowCols = mKernelWidth;
const int32_t rowStride = mStrideHeight;
const int32_t colStride = mStrideWidth;
const int32_t outHeight = output->buffer().dim[1].extent;
const int32_t outWidth = output->buffer().dim[2].extent;
switch (mPadMode) {
case PoolPadType_CAFFE:
MNN_ASSERT(false);
break;
case PoolPadType_VALID:
padRows = padCols = 0;
break;
case PoolPadType_SAME:
auto widthNeeded = (outWidth - 1) * colStride + windowCols - inCols;
auto heightNeeded = (outHeight - 1) * rowStride + windowRows - inRows;
mPadWidth = widthNeeded > 0 ? widthNeeded / 2 : 0;
mPadHeight = heightNeeded > 0 ? heightNeeded / 2 : 0;
break;
}
uint8_t *inputPtr = (uint8_t *)input->buffer().host;
uint8_t *outputPtr = (uint8_t *)output->buffer().host;
std::vector<int> inputDims;
inputDims.push_back(inBatch);
inputDims.push_back(inRows);
inputDims.push_back(inCols);
inputDims.push_back(inChannel);
std::vector<int> outputDims;
outputDims.push_back(output->length(0));
outputDims.push_back(output->length(1));
outputDims.push_back(output->length(2));
outputDims.push_back(output->length(3));
Optimized::AveragePool(inputPtr, inputDims, mStrideWidth, mStrideHeight, mPadWidth, mPadHeight, mKernelWidth,
mKernelHeight, mOutputActivationMin, mOutputActivationMax, outputPtr, outputDims);
return NO_ERROR;
}
class CPUQuantizedAvgPoolCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const {
return new CPUQuantizedAvgPool(backend, op);
}
};
REGISTER_CPU_OP_CREATOR(CPUQuantizedAvgPoolCreator, OpType_QuantizedAvgPool);
} // namespace MNN