mirror of https://github.com/alibaba/MNN.git
202 lines
6.3 KiB
C++
202 lines
6.3 KiB
C++
|
//
|
||
|
// CPUSoftmax.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2018/07/16.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include "CPUSoftmax.hpp"
|
||
|
#include <math.h>
|
||
|
#include "CPUBackend.hpp"
|
||
|
#include "CommonOptFunction.h"
|
||
|
#include "Macro.h"
|
||
|
#ifdef MNN_USE_NEON
|
||
|
#include <arm_neon.h>
|
||
|
#endif
|
||
|
|
||
|
namespace MNN {
|
||
|
|
||
|
static int _softmax1(const float *srcData, float *dstData, int outside, int channel) {
|
||
|
const float *srcY = srcData;
|
||
|
float *dstY = dstData;
|
||
|
for (int y = 0; y < outside; ++y, srcY += channel, dstY += channel) {
|
||
|
// max
|
||
|
float maxValue = srcY[0];
|
||
|
{
|
||
|
int c = 1;
|
||
|
#ifdef MNN_USE_NEON
|
||
|
#if !(defined(__ARM_FEATURE_FMA) && defined(__aarch64__))
|
||
|
#define vmaxvq_f32(v) \
|
||
|
({ \
|
||
|
float __m = v[0]; \
|
||
|
for (int i = 1; i < 4; i++) { \
|
||
|
if (v[i] > __m) \
|
||
|
__m = v[i]; \
|
||
|
} \
|
||
|
__m; \
|
||
|
})
|
||
|
#endif
|
||
|
if (c + 3 < channel) {
|
||
|
float32x4_t maxx4 = vld1q_f32(srcY + c);
|
||
|
c += 4;
|
||
|
for (; c + 3 < channel; c += 4) {
|
||
|
maxx4 = vmaxq_f32(maxx4, vld1q_f32(srcY + c));
|
||
|
}
|
||
|
float value = vmaxvq_f32(maxx4);
|
||
|
if (value > maxValue)
|
||
|
maxValue = value;
|
||
|
}
|
||
|
#endif
|
||
|
for (; c < channel; ++c) {
|
||
|
float value = srcY[c];
|
||
|
if (value > maxValue)
|
||
|
maxValue = value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// sum
|
||
|
float sumValue = 0;
|
||
|
#pragma clang loop vectorize(enable)
|
||
|
for (int c = 0; c < channel; ++c) {
|
||
|
dstY[c] = expf(srcY[c] - maxValue);
|
||
|
sumValue += dstY[c];
|
||
|
}
|
||
|
|
||
|
// div
|
||
|
{
|
||
|
int c = 0;
|
||
|
#ifdef MNN_USE_NEON
|
||
|
float div = 1.f / sumValue;
|
||
|
for (; c + 3 < channel; c += 4) {
|
||
|
vst1q_f32(dstY + c, vmulq_n_f32(vld1q_f32(dstY + c), div));
|
||
|
}
|
||
|
#endif
|
||
|
for (; c < channel; ++c) {
|
||
|
dstY[c] /= sumValue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
static int _softmaxCommon(const float *srcData, float *dstData, int inside, int outside, int channel) {
|
||
|
if (inside == 1)
|
||
|
return _softmax1(srcData, dstData, outside, channel);
|
||
|
|
||
|
// malloc temp memory
|
||
|
float *maxValue = (float *)malloc(sizeof(float) * inside);
|
||
|
float *sumValue = (float *)malloc(sizeof(float) * inside);
|
||
|
|
||
|
const float *srcY = srcData;
|
||
|
float *dstY = dstData;
|
||
|
const int stepY = inside * channel;
|
||
|
for (int y = 0; y < outside; ++y, srcY += stepY, dstY += stepY) {
|
||
|
memcpy(maxValue, srcY, sizeof(float) * inside);
|
||
|
const float *src = srcY + inside;
|
||
|
for (int c = 1; c < channel; ++c, src += inside) {
|
||
|
for (int x = 0; x < inside; ++x) {
|
||
|
if (src[x] > maxValue[x])
|
||
|
maxValue[x] = src[x];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
memset(sumValue, 0, sizeof(float) * inside);
|
||
|
src = srcY;
|
||
|
float *dst = dstY;
|
||
|
for (int c = 0; c < channel; ++c, src += inside, dst += inside) {
|
||
|
for (int x = 0; x < inside; ++x) {
|
||
|
dst[x] = expf(src[x] - maxValue[x]);
|
||
|
sumValue[x] += dst[x];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dst = dstY;
|
||
|
for (int c = 0; c < channel; ++c, dst += inside) {
|
||
|
for (int x = 0; x < inside; ++x) {
|
||
|
dst[x] /= sumValue[x];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(maxValue);
|
||
|
free(sumValue);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ErrorCode CPUSoftmax::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
||
|
auto input = inputs[0];
|
||
|
int totalSize = 1;
|
||
|
for (int i = 0; i < input->buffer().dimensions; ++i) {
|
||
|
totalSize *= input->buffer().dim[i].extent;
|
||
|
}
|
||
|
mStorage.buffer().dim[0].extent = 1;
|
||
|
mStorage.buffer().dim[1].extent = totalSize;
|
||
|
mStorage.buffer().dim[1].flags = 0;
|
||
|
mStorage.buffer().dimensions = 2;
|
||
|
mStorage.buffer().type = input->getType();
|
||
|
backend()->onAcquireBuffer(&mStorage, Backend::DYNAMIC);
|
||
|
backend()->onReleaseBuffer(&mStorage, Backend::DYNAMIC);
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
ErrorCode CPUSoftmax::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
||
|
MNN_ASSERT(1 == inputs.size());
|
||
|
MNN_ASSERT(1 == outputs.size());
|
||
|
auto inputTensor = inputs[0];
|
||
|
auto outputTensor = outputs[0];
|
||
|
// TODO
|
||
|
const auto dims = inputTensor->buffer().dimensions;
|
||
|
MNN_ASSERT(dims >= 2);
|
||
|
if (-1 == mAxis) {
|
||
|
mAxis = dims - 1;
|
||
|
}
|
||
|
float *tempData = mStorage.host<float>();
|
||
|
|
||
|
int areaInput = 1;
|
||
|
for (int i = 2; i < inputTensor->buffer().dimensions; ++i) {
|
||
|
areaInput *= inputTensor->buffer().dim[i].extent;
|
||
|
}
|
||
|
int inside = 1;
|
||
|
int outside = 1;
|
||
|
int channel = 1;
|
||
|
for (int i = 1; i < mAxis; ++i) {
|
||
|
outside *= inputTensor->buffer().dim[i].extent;
|
||
|
}
|
||
|
channel = inputTensor->buffer().dim[mAxis].extent;
|
||
|
for (int i = mAxis + 1; i < inputTensor->buffer().dimensions; ++i) {
|
||
|
inside *= inputTensor->buffer().dim[i].extent;
|
||
|
}
|
||
|
|
||
|
int batchSize = outputTensor->size() / sizeof(float) / outputTensor->batch();
|
||
|
for (int batchIndex = 0; batchIndex < outputTensor->batch(); ++batchIndex) {
|
||
|
auto inputData = inputTensor->host<float>() + batchIndex * batchSize;
|
||
|
auto outputData = outputTensor->host<float>() + batchIndex * batchSize;
|
||
|
if (1 == areaInput) {
|
||
|
_softmaxCommon(inputData, outputData, inside, outside, channel);
|
||
|
continue;
|
||
|
}
|
||
|
MNNUnpackC4(outputData, inputData, areaInput, inputTensor->channel());
|
||
|
_softmaxCommon(outputData, tempData, inside, outside, channel);
|
||
|
MNNPackC4(outputData, tempData, areaInput, outputTensor->channel());
|
||
|
}
|
||
|
|
||
|
return NO_ERROR;
|
||
|
}
|
||
|
|
||
|
CPUSoftmax::CPUSoftmax(Backend *b, int axis) : MNN::Execution(b), mAxis(axis), mStorage(2) {
|
||
|
// nothing to do
|
||
|
}
|
||
|
|
||
|
class CPUSoftmaxCreator : public CPUBackend::Creator {
|
||
|
public:
|
||
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
||
|
const MNN::Op *op, Backend *backend) const override {
|
||
|
return new CPUSoftmax(backend, op->main_as_Axis()->axis());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
REGISTER_CPU_OP_CREATOR(CPUSoftmaxCreator, OpType_Softmax);
|
||
|
|
||
|
} // namespace MNN
|