mirror of https://github.com/alibaba/MNN.git
69 lines
2.6 KiB
C++
69 lines
2.6 KiB
C++
|
//
|
|||
|
// ShapeQuantizedAvgPool.cpp
|
|||
|
// MNN
|
|||
|
//
|
|||
|
// Created by MNN on 2019/01/10.
|
|||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|||
|
//
|
|||
|
|
|||
|
#include <math.h>
|
|||
|
#include "Macro.h"
|
|||
|
#include "SizeComputer.hpp"
|
|||
|
|
|||
|
namespace MNN {
|
|||
|
class QuantizedAvgPoolComputer : public SizeComputer {
|
|||
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|||
|
const std::vector<Tensor*>& outputs) const override {
|
|||
|
auto layer = op->main_as_QuantizedAvgPool();
|
|||
|
|
|||
|
MNN_ASSERT(layer->strideX() == layer->strideY());
|
|||
|
|
|||
|
int kernel_width = layer->kernelX();
|
|||
|
int kernel_height = layer->kernelY();
|
|||
|
|
|||
|
int output_width = 1;
|
|||
|
int output_height = 1;
|
|||
|
|
|||
|
auto input = inputs[0];
|
|||
|
|
|||
|
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
|
|||
|
output_width = ceil((float)input->tfWidth() / (float)layer->strideX()); // NHWC for tensorflow
|
|||
|
output_height = ceil((float)input->tfHeight() / (float)layer->strideY()); // the default layout is NCHW
|
|||
|
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
|
|||
|
output_width = ceil((float)(input->tfWidth() - kernel_width + 1) / (float)layer->strideX());
|
|||
|
output_height = ceil((float)(input->tfHeight() - kernel_height + 1) / (float)layer->strideY());
|
|||
|
} else {
|
|||
|
MNN_ASSERT(false); // unsupported type
|
|||
|
}
|
|||
|
|
|||
|
// output:NHWC MNN: nchw
|
|||
|
auto& outputBuffer = outputs[0]->buffer();
|
|||
|
outputBuffer.dimensions = input->buffer().dimensions;
|
|||
|
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
|
|||
|
|
|||
|
outputBuffer.dim[1].extent = output_height;
|
|||
|
outputBuffer.dim[2].extent = output_width;
|
|||
|
outputBuffer.dim[3].extent = input->buffer().dim[3].extent;
|
|||
|
|
|||
|
if (3 == inputs.size()) {
|
|||
|
auto output_min = outputs[1]->buffer();
|
|||
|
output_min.dimensions = 0;
|
|||
|
output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
|
|||
|
1;
|
|||
|
|
|||
|
auto output_max = outputs[2]->buffer();
|
|||
|
output_max.dimensions = 0;
|
|||
|
output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
|
|||
|
1;
|
|||
|
outputs[0]->setType(DataType_DT_INT32);
|
|||
|
} else {
|
|||
|
outputs[0]->setType(DataType_DT_UINT8);
|
|||
|
}
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
REGISTER_SHAPE(QuantizedAvgPoolComputer, OpType_QuantizedAvgPool);
|
|||
|
} // namespace MNN
|