MNN/source/shape/ShapeQuantizedAvgPool.cpp

69 lines
2.6 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeQuantizedAvgPool.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class QuantizedAvgPoolComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer = op->main_as_QuantizedAvgPool();
MNN_ASSERT(layer->strideX() == layer->strideY());
int kernel_width = layer->kernelX();
int kernel_height = layer->kernelY();
int output_width = 1;
int output_height = 1;
auto input = inputs[0];
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
output_width = ceil((float)input->tfWidth() / (float)layer->strideX()); // NHWC for tensorflow
output_height = ceil((float)input->tfHeight() / (float)layer->strideY()); // the default layout is NCHW
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
output_width = ceil((float)(input->tfWidth() - kernel_width + 1) / (float)layer->strideX());
output_height = ceil((float)(input->tfHeight() - kernel_height + 1) / (float)layer->strideY());
} else {
MNN_ASSERT(false); // unsupported type
}
// outputNHWC MNN: nchw
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
outputBuffer.dim[1].extent = output_height;
outputBuffer.dim[2].extent = output_width;
outputBuffer.dim[3].extent = input->buffer().dim[3].extent;
if (3 == inputs.size()) {
auto output_min = outputs[1]->buffer();
output_min.dimensions = 0;
output_min.dim[0].extent = output_min.dim[1].extent = output_min.dim[2].extent = output_min.dim[3].extent =
1;
auto output_max = outputs[2]->buffer();
output_max.dimensions = 0;
output_max.dim[0].extent = output_max.dim[1].extent = output_max.dim[2].extent = output_max.dim[3].extent =
1;
outputs[0]->setType(DataType_DT_INT32);
} else {
outputs[0]->setType(DataType_DT_UINT8);
}
return true;
}
};
REGISTER_SHAPE(QuantizedAvgPoolComputer, OpType_QuantizedAvgPool);
} // namespace MNN