2019-07-11 13:56:52 +08:00
|
|
|
//
|
|
|
|
// CPUInt8ToFloat.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/5/22.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "backend/cpu/CPUInt8ToFloat.hpp"
|
|
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
|
|
#include "core/Concurrency.h"
|
|
|
|
#include "core/Macro.h"
|
2019-07-11 13:56:52 +08:00
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
void MNNInt8ScaleToFloat(float* dst, const int8_t* src, const float* scale, size_t size);
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
CPUInt8ToFloat::CPUInt8ToFloat(Backend* backend, const MNN::Op* param) : Execution(backend) {
|
|
|
|
auto scale = param->main_as_QuantizedFloatParam();
|
|
|
|
const int scaleLen = scale->tensorScale()->size();
|
|
|
|
mScales.reset(Tensor::createDevice<float>({ALIGN_UP4(scaleLen)}));
|
|
|
|
mValid = backend->onAcquireBuffer(mScales.get(), Backend::STATIC);
|
|
|
|
if (!mValid) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
memset(mScales->host<float>(), 0, ALIGN_UP4(scaleLen) * sizeof(float));
|
|
|
|
memcpy(mScales->host<float>(), scale->tensorScale()->data(), scaleLen * sizeof(float));
|
|
|
|
}
|
|
|
|
CPUInt8ToFloat::~CPUInt8ToFloat() {
|
|
|
|
backend()->onReleaseBuffer(mScales.get(), Backend::STATIC);
|
|
|
|
}
|
|
|
|
ErrorCode CPUInt8ToFloat::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
|
|
|
const auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
|
|
|
|
const auto inputDataPtr = input->host<int8_t>();
|
|
|
|
auto outputDataPtr = output->host<float>();
|
|
|
|
const auto scaleDataPtr = mScales->host<float>();
|
|
|
|
const int channels = input->channel();
|
|
|
|
const int icDiv4 = UP_DIV(channels, 4);
|
|
|
|
const int batch = input->batch();
|
|
|
|
const int batchStride = input->stride(0);
|
|
|
|
const int width = input->width();
|
|
|
|
const int height = input->height();
|
|
|
|
const int oc4Stride = width * height;
|
|
|
|
|
|
|
|
for (int bIndex = 0; bIndex < batch; ++bIndex) {
|
|
|
|
const auto srcBatch = inputDataPtr + bIndex * batchStride;
|
|
|
|
auto dstBatch = outputDataPtr + bIndex * batchStride;
|
|
|
|
|
|
|
|
MNN_CONCURRENCY_BEGIN(tId, icDiv4) {
|
|
|
|
const auto srcChannelPtr = srcBatch + tId * oc4Stride * 4;
|
|
|
|
const auto scaleChannelPtr = scaleDataPtr + tId * 4;
|
|
|
|
auto dstChannlePtr = dstBatch + tId * oc4Stride * 4;
|
|
|
|
|
|
|
|
#ifdef MNN_USE_NEON
|
|
|
|
MNNInt8ScaleToFloat(dstChannlePtr, srcChannelPtr, scaleChannelPtr, oc4Stride);
|
|
|
|
#else
|
|
|
|
for (int i = 0; i < oc4Stride; ++i) {
|
|
|
|
const auto srcStart = srcChannelPtr + i * 4;
|
|
|
|
auto dstStart = dstChannlePtr + i * 4;
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
dstStart[j] = static_cast<float>(srcStart[j]) * scaleChannelPtr[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
MNN_CONCURRENCY_END();
|
|
|
|
}
|
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUInt8ToFloatCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
|
|
return new CPUInt8ToFloat(backend, op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUInt8ToFloatCreator, OpType_Int8ToFloat);
|
|
|
|
|
|
|
|
} // namespace MNN
|