MNN/source/backend/cpu/CPUScale.cpp

64 lines
2.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUScale.cpp
// MNN
//
// Created by MNN on 2018/08/07.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUScale.hpp"
#include "CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
#include "TensorUtils.hpp"
namespace MNN {
CPUScale::CPUScale(const Op* op, Backend* bn) : MNN::Execution(bn) {
auto scale = op->main_as_Scale();
int outputCount = scale->scaleData()->size();
mScale.reset(ALIGN_UP4(outputCount));
mScale.clear();
::memcpy(mScale.get(), scale->scaleData()->data(), outputCount * sizeof(float));
mBias.reset(ALIGN_UP4(outputCount));
mBias.clear();
if (nullptr != scale->biasData() && nullptr != scale->biasData()->data()) {
::memcpy(mBias.get(), scale->biasData()->data(), outputCount * sizeof(float));
}
}
ErrorCode CPUScale::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
if (TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
auto batchSize = input->buffer().dim[0].stride;
auto batch = input->buffer().dim[0].extent;
auto depthQuad = UP_DIV(input->channel(), 4);
int planeNumber = 1;
for (int i = 2; i < input->buffer().dimensions; ++i) {
planeNumber *= input->length(i);
}
2019-04-17 10:49:11 +08:00
for (int i = 0; i < batch; ++i) {
MNNScaleAndAddBias(output->host<float>() + batchSize * i, input->host<float>() + batchSize * i, mBias.get(),
mScale.get(), planeNumber, depthQuad);
}
return NO_ERROR;
}
MNN_ASSERT(TensorUtils::getDescribe(input)->dimensionFormat == MNN_DATA_FORMAT_NHWC);
auto channel = input->channel();
2019-04-17 10:49:11 +08:00
auto outside = input->elementSize() / channel;
MNNScaleAndAddBiasOutside(output->host<float>(), input->host<float>(), mBias.get(), mScale.get(), outside, channel);
return NO_ERROR;
}
class CPUScaleCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUScale(op, backend);
}
};
REGISTER_CPU_OP_CREATOR(CPUScaleCreator, OpType_Scale);
} // namespace MNN