2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// CPUWhere.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/08/31.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "CPUWhere.hpp"
|
|
|
|
#include "CPUBackend.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
ErrorCode CPUWhere::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
|
2019-07-04 19:38:23 +08:00
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
int32_t* inputData = inputs[0]->host<int32_t>();
|
|
|
|
auto outputData = outputs[0]->host<int32_t>();
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
std::vector<int32_t> trueVec;
|
|
|
|
for (int i = 0; i < ob.dim[0].extent; i++) {
|
|
|
|
if (inputData[i] > 0) {
|
|
|
|
trueVec.push_back(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-07-04 19:38:23 +08:00
|
|
|
// ob.dim[0].extent = (int)trueVec.size();
|
|
|
|
int k = 0;
|
2019-04-17 10:49:11 +08:00
|
|
|
for (int i = 0; i < trueVec.size(); i++) {
|
|
|
|
int index = trueVec[i];
|
|
|
|
for (int j = 0; j < ib.dimensions; j++) {
|
|
|
|
int result = index / ib.dim[j].stride;
|
|
|
|
index = index - result * ib.dim[j].stride;
|
|
|
|
outputData[k] = result;
|
|
|
|
k++;
|
|
|
|
}
|
|
|
|
}
|
2019-07-04 19:38:23 +08:00
|
|
|
int defaultValue = 0;
|
|
|
|
if (!trueVec.empty()) {
|
|
|
|
defaultValue = trueVec[0];
|
|
|
|
}
|
|
|
|
for (int i = (int)trueVec.size(); i < ob.dim[0].extent; ++i) {
|
|
|
|
outputData[i] = defaultValue;
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
return NO_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
class CPUWhereCreator : public CPUBackend::Creator {
|
|
|
|
public:
|
|
|
|
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
|
|
const MNN::Op* op, Backend* backend) const override {
|
|
|
|
return new CPUWhere(backend);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPUWhereCreator, OpType_Where);
|
|
|
|
} // namespace MNN
|