2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// Tensor.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2018/07/06.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "Tensor.hpp"
|
|
|
|
#include <complex.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include "Backend.hpp"
|
|
|
|
#include "MNNMemoryUtils.h"
|
|
|
|
#include "MNN_generated.h"
|
|
|
|
#include "Macro.h"
|
|
|
|
#include "TensorUtils.hpp"
|
|
|
|
|
|
|
|
#define MAX_TENSOR_DIM 6
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
Tensor::Tensor(int dimSize, DimensionType type) {
|
|
|
|
MNN_ASSERT(dimSize <= MAX_TENSOR_DIM);
|
|
|
|
|
|
|
|
mBuffer.dim = new halide_dimension_t[MAX_TENSOR_DIM];
|
|
|
|
mBuffer.dimensions = dimSize;
|
|
|
|
mBuffer.type = halide_type_of<float>();
|
|
|
|
mBuffer.device = 0;
|
|
|
|
mBuffer.host = nullptr;
|
|
|
|
|
|
|
|
mDescribe = new InsideDescribe;
|
|
|
|
mDescribe->dimensionStorage = mBuffer.dim;
|
|
|
|
switch (type) {
|
|
|
|
case CAFFE:
|
|
|
|
mDescribe->dimensionFormat = MNN_DATA_FORMAT_NCHW;
|
|
|
|
break;
|
|
|
|
case TENSORFLOW:
|
|
|
|
mDescribe->dimensionFormat = MNN_DATA_FORMAT_NHWC;
|
|
|
|
break;
|
|
|
|
case CAFFE_C4:
|
|
|
|
mDescribe->dimensionFormat = MNN_DATA_FORMAT_NC4HW4;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor::Tensor(const Tensor* tensor, DimensionType type, bool allocMemory) {
|
|
|
|
MNN_ASSERT(tensor != nullptr);
|
|
|
|
|
|
|
|
auto buffer = tensor->buffer();
|
|
|
|
mBuffer.dim = new halide_dimension_t[MAX_TENSOR_DIM];
|
|
|
|
mBuffer.dimensions = buffer.dimensions;
|
|
|
|
mBuffer.type = buffer.type;
|
|
|
|
mBuffer.device = 0;
|
|
|
|
mBuffer.host = nullptr;
|
|
|
|
for (int i = 0; i < buffer.dimensions; ++i) {
|
|
|
|
mBuffer.dim[i].min = 0;
|
|
|
|
mBuffer.dim[i].extent = buffer.dim[i].extent;
|
|
|
|
}
|
|
|
|
mDescribe = new InsideDescribe;
|
|
|
|
mDescribe->dimensionStorage = mBuffer.dim;
|
|
|
|
switch (type) {
|
|
|
|
case CAFFE:
|
|
|
|
mDescribe->dimensionFormat = MNN_DATA_FORMAT_NCHW;
|
|
|
|
break;
|
|
|
|
case TENSORFLOW:
|
|
|
|
mDescribe->dimensionFormat = MNN_DATA_FORMAT_NHWC;
|
|
|
|
break;
|
|
|
|
case CAFFE_C4:
|
|
|
|
mDescribe->dimensionFormat = MNN_DATA_FORMAT_NC4HW4;
|
|
|
|
type = CAFFE;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// format mapping
|
|
|
|
auto originType = tensor->getDimensionType();
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
if (originType != type && buffer.dimensions >= 4) {
|
2019-04-17 10:49:11 +08:00
|
|
|
std::vector<int> axisMap;
|
|
|
|
// NCHW -> NHWC
|
|
|
|
if (originType == CAFFE) {
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
axisMap.push_back(0);
|
|
|
|
for (int i = 2; i < buffer.dimensions; ++i) {
|
|
|
|
axisMap.push_back(i);
|
|
|
|
}
|
|
|
|
axisMap.push_back(1);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
// NHWC -> NCHW
|
|
|
|
else {
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
axisMap.push_back(0);
|
|
|
|
axisMap.push_back(buffer.dimensions - 1);
|
|
|
|
for (int i = 1; i < buffer.dimensions - 1; ++i) {
|
|
|
|
axisMap.push_back(i);
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
for (int i = 0; i < buffer.dimensions; ++i) {
|
|
|
|
mBuffer.dim[i].extent = buffer.dim[axisMap[i]].extent;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
TensorUtils::setLinearLayout(this);
|
|
|
|
|
|
|
|
if (allocMemory) {
|
- dynamic computation graph (beta)
- add supports (/express)
- add tests
- add benchmarks with it (/benchmark/exprModels)
- Python
- MNN engine and tools were submitted to pip
- available on Windows/macOS/Linux
- Engine/Converter
- add supports for each op benchmarking
- refactor optimizer by separating steps
- CPU
- add supports for Conv3D, Pool3D, ELU, ReverseSequence
- fix ArgMax, Permute, Scale, BinaryOp, Slice, SliceTf
- OpenCL
- add half transform in CPU
- add broadcast supports for binary
- optimize Conv2D, Reshape, Eltwise, Gemm, etc.
- OpenGL
- add sub, real div supports for binary
- add supports for unary
- optimize Conv2D, Reshape
- Vulkan
- add max supports for eltwise
- Metal
- fix metallib missing problem
- Train/Quantization
- use express to refactor training codes
2019-09-26 21:02:07 +08:00
|
|
|
auto memorySize = size();
|
|
|
|
if (memorySize > 0) {
|
|
|
|
mDescribe->ownHost = true;
|
|
|
|
mBuffer.host = (uint8_t*)MNNMemoryAllocAlign(size(), MNN_MEMORY_ALIGN_DEFAULT);
|
|
|
|
MNN_ASSERT(mBuffer.host != nullptr);
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor::~Tensor() {
|
|
|
|
if (nullptr != mDescribe->handleFreeFunction) {
|
|
|
|
MNN_ASSERT(mBuffer.type.code == halide_type_handle);
|
|
|
|
auto handles = (void**)mBuffer.host;
|
|
|
|
for (int i = 0; i < elementSize(); ++i) {
|
|
|
|
if (nullptr != handles[i]) {
|
|
|
|
mDescribe->handleFreeFunction(handles[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (mDescribe->ownHost) {
|
|
|
|
MNNMemoryFreeAlign(mBuffer.host);
|
|
|
|
}
|
|
|
|
delete[] mDescribe->dimensionStorage;
|
|
|
|
delete mDescribe;
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor* Tensor::createDevice(const std::vector<int>& dims, halide_type_t type, DimensionType dimType) {
|
|
|
|
Tensor shapeTensor((int)dims.size(), dimType);
|
|
|
|
for (int i = 0; i < dims.size(); ++i) {
|
|
|
|
shapeTensor.setLength(i, dims[i]);
|
|
|
|
}
|
|
|
|
shapeTensor.buffer().type = type;
|
|
|
|
return new Tensor(&shapeTensor, dimType, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor* Tensor::create(const std::vector<int>& dims, halide_type_t type, void* userData, DimensionType dimType) {
|
|
|
|
Tensor shapeTensor((int)dims.size(), dimType);
|
|
|
|
for (int i = 0; i < dims.size(); ++i) {
|
|
|
|
shapeTensor.setLength(i, dims[i]);
|
|
|
|
}
|
|
|
|
shapeTensor.buffer().type = type;
|
|
|
|
|
|
|
|
bool ownData = userData == nullptr;
|
|
|
|
auto result = new Tensor(&shapeTensor, dimType, ownData);
|
|
|
|
if (nullptr != userData) {
|
|
|
|
result->buffer().host = (uint8_t*)userData;
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Tensor::copyFromHostTensor(const Tensor* hostTensor) {
|
|
|
|
auto bn = mDescribe->backend;
|
|
|
|
if (nullptr == bn) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bn->onCopyBuffer(hostTensor, this);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Tensor::copyToHostTensor(Tensor* hostTensor) const {
|
|
|
|
auto bn = mDescribe->backend;
|
|
|
|
if (nullptr == bn) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
bn->onCopyBuffer(this, hostTensor);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static Tensor::DimensionType getDimType(const Tensor* origin) {
|
|
|
|
auto dimformat = TensorUtils::getDescribe(origin)->dimensionFormat;
|
|
|
|
switch (dimformat) {
|
|
|
|
case MNN_DATA_FORMAT_NHWC:
|
|
|
|
return Tensor::TENSORFLOW;
|
|
|
|
case MNN_DATA_FORMAT_NCHW:
|
|
|
|
return Tensor::CAFFE;
|
|
|
|
case MNN_DATA_FORMAT_NC4HW4:
|
|
|
|
return Tensor::CAFFE_C4;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return Tensor::CAFFE;
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor* Tensor::createHostTensorFromDevice(const Tensor* device, bool copyContent) {
|
|
|
|
auto tensor = Tensor::create(device->shape(), device->getType(), nullptr, getDimType(device));
|
|
|
|
if (copyContent) {
|
|
|
|
device->copyToHostTensor(tensor);
|
|
|
|
}
|
|
|
|
return tensor;
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor::DimensionType Tensor::getDimensionType() const {
|
2019-05-05 20:27:57 +08:00
|
|
|
if (mDescribe->dimensionFormat == MNN_DATA_FORMAT_NHWC) {
|
2019-04-17 10:49:11 +08:00
|
|
|
return Tensor::TENSORFLOW;
|
|
|
|
}
|
|
|
|
return Tensor::CAFFE;
|
|
|
|
}
|
|
|
|
|
|
|
|
Tensor::HandleDataType Tensor::getHandleDataType() const {
|
|
|
|
if (halide_type_handle != mBuffer.type.code) {
|
|
|
|
return HANDLE_NONE;
|
|
|
|
}
|
|
|
|
return mDescribe->handleType;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Tensor::setType(int type) {
|
|
|
|
switch (type) {
|
|
|
|
case DataType_DT_DOUBLE:
|
|
|
|
case DataType_DT_FLOAT:
|
|
|
|
mBuffer.type = halide_type_of<float>();
|
|
|
|
break;
|
|
|
|
case DataType_DT_BFLOAT16:
|
|
|
|
mBuffer.type = halide_type_t(halide_type_float, 16);
|
|
|
|
break;
|
|
|
|
case DataType_DT_QINT32:
|
|
|
|
case DataType_DT_INT32:
|
|
|
|
case DataType_DT_BOOL:
|
|
|
|
case DataType_DT_INT64:
|
2019-07-04 19:38:23 +08:00
|
|
|
mBuffer.type = halide_type_of<int32_t>();
|
2019-04-17 10:49:11 +08:00
|
|
|
break;
|
|
|
|
case DataType_DT_QINT8:
|
|
|
|
case DataType_DT_INT8:
|
|
|
|
mBuffer.type = halide_type_of<int8_t>();
|
|
|
|
break;
|
|
|
|
case DataType_DT_QUINT8:
|
|
|
|
case DataType_DT_UINT8:
|
|
|
|
mBuffer.type = halide_type_of<uint8_t>();
|
|
|
|
break;
|
|
|
|
case DataType_DT_QUINT16:
|
|
|
|
case DataType_DT_UINT16:
|
|
|
|
mBuffer.type = halide_type_of<uint16_t>();
|
|
|
|
break;
|
|
|
|
case DataType_DT_QINT16:
|
|
|
|
case DataType_DT_INT16:
|
|
|
|
mBuffer.type = halide_type_of<int16_t>();
|
|
|
|
break;
|
|
|
|
case DataType_DT_STRING:
|
|
|
|
mBuffer.type = halide_type_t(halide_type_handle, sizeof(void*) * 8);
|
|
|
|
mDescribe->handleType = HANDLE_STRING;
|
|
|
|
mDescribe->handleFreeFunction = (void (*)(void*))::free;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
MNN_PRINT("Unsupported data type!");
|
|
|
|
MNN_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int> Tensor::shape() const {
|
|
|
|
std::vector<int> result;
|
|
|
|
for (int i = 0; i < mBuffer.dimensions; ++i) {
|
|
|
|
result.push_back(mBuffer.dim[i].extent);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int Tensor::size() const {
|
|
|
|
auto dataSize = this->buffer().type.bytes();
|
|
|
|
MNN_ASSERT(dataSize >= 1);
|
|
|
|
for (int i = 0; i < this->buffer().dimensions; i++) {
|
|
|
|
int currentDimSize = mBuffer.dim[i].extent;
|
2019-08-22 20:13:46 +08:00
|
|
|
if (mDescribe->dimensionFormat == MNN_DATA_FORMAT_NC4HW4 && 1 == i) {
|
|
|
|
currentDimSize = ALIGN_UP4(currentDimSize);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
dataSize *= currentDimSize;
|
|
|
|
}
|
|
|
|
return dataSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void printData(const Tensor* tensor, const void* data, const char* fmt) {
|
|
|
|
const T* buffer = (const T*)data;
|
|
|
|
if (tensor->dimensions() != 4) {
|
2019-08-22 20:13:46 +08:00
|
|
|
auto size = tensor->elementSize();
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
|
|
MNN_PRINT(fmt, buffer[i]);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
MNN_PRINT("\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto tf = tensor->getDimensionType() == Tensor::TENSORFLOW;
|
|
|
|
auto batch = tensor->batch();
|
2019-05-05 20:27:57 +08:00
|
|
|
auto channel = tensor->channel();
|
|
|
|
auto height = tensor->height();
|
|
|
|
auto width = tensor->width();
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
auto unit = sizeof(T);
|
|
|
|
if (tf) {
|
|
|
|
auto bytesPerRow = channel * unit;
|
|
|
|
auto bytesPerImage = width * bytesPerRow;
|
|
|
|
auto bytesPerBatch = height * bytesPerImage;
|
|
|
|
|
|
|
|
for (int b = 0; b < batch; b++) {
|
|
|
|
auto bytes = buffer + b * bytesPerBatch / unit;
|
|
|
|
MNN_PRINT("batch %d:\n", b);
|
|
|
|
|
|
|
|
for (int h = 0; h < height; h++) {
|
|
|
|
for (int w = 0; w < width; w++) {
|
|
|
|
for (int c = 0; c < channel; c++) {
|
2019-08-22 20:13:46 +08:00
|
|
|
MNN_PRINT(fmt, bytes[h * width * channel + w * channel + c]);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
MNN_PRINT("\n");
|
|
|
|
}
|
|
|
|
MNN_PRINT("--------------\n");
|
|
|
|
}
|
|
|
|
}
|
2019-08-22 20:13:46 +08:00
|
|
|
} else if (TensorUtils::getDescribe(tensor)->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) { // NC/4HW4
|
2019-04-17 10:49:11 +08:00
|
|
|
auto components = 4;
|
|
|
|
auto bytesPerRow = width * components * unit;
|
|
|
|
auto bytesPerImage = height * bytesPerRow;
|
|
|
|
auto bytesPerBatch = UP_DIV(channel, 4) * bytesPerImage;
|
|
|
|
|
|
|
|
for (int b = 0; b < batch; b++) {
|
|
|
|
auto bytes = buffer + b * bytesPerBatch / unit;
|
|
|
|
MNN_PRINT("batch %d:\n", b);
|
|
|
|
|
|
|
|
for (int c = 0; c < channel; c++) {
|
|
|
|
for (int h = 0; h < height; h++) {
|
|
|
|
for (int w = 0; w < width; w++) {
|
|
|
|
auto n = c / components, r = c % components;
|
2019-08-22 20:13:46 +08:00
|
|
|
MNN_PRINT(fmt, bytes[(n * width * height + h * width + w) * components + r]);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
MNN_PRINT("\n");
|
|
|
|
}
|
|
|
|
MNN_PRINT("--------------\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else { // NCHW
|
|
|
|
auto bytesPerRow = width * unit;
|
|
|
|
auto bytesPerImage = height * bytesPerRow;
|
|
|
|
auto bytesPerBatch = channel * bytesPerImage;
|
|
|
|
|
|
|
|
for (int b = 0; b < batch; b++) {
|
|
|
|
auto bytes = buffer + b * bytesPerBatch / unit;
|
|
|
|
MNN_PRINT("batch %d:\n", b);
|
|
|
|
|
|
|
|
for (int c = 0; c < channel; c++) {
|
|
|
|
for (int h = 0; h < height; h++) {
|
|
|
|
for (int w = 0; w < width; w++) {
|
2019-08-22 20:13:46 +08:00
|
|
|
MNN_PRINT(fmt, bytes[c * width * height + h * width + w]);
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
MNN_PRINT("\n");
|
|
|
|
}
|
|
|
|
MNN_PRINT("--------------\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Tensor::print() const {
|
|
|
|
// print dimensions
|
|
|
|
MNN_PRINT("====== Tensor %p ======", this);
|
|
|
|
MNN_PRINT("\nDimension: ");
|
|
|
|
for (int i = 0; i < mBuffer.dimensions; i++) {
|
|
|
|
MNN_PRINT("%d, ", mBuffer.dim[i].extent);
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert to host if needed
|
|
|
|
auto printee = this;
|
|
|
|
bool device = this->buffer().host == NULL && this->buffer().device != 0;
|
|
|
|
if (device) {
|
|
|
|
printee = this->createHostTensorFromDevice(this, true);
|
|
|
|
}
|
|
|
|
auto buffer = printee->buffer().host;
|
|
|
|
|
|
|
|
MNN_PRINT("\nData: ");
|
|
|
|
if (printee->getType().code == halide_type_int) {
|
|
|
|
if (printee->getType().bits == 8) { // int8
|
|
|
|
printData<int8_t>(printee, buffer, "%d, ");
|
|
|
|
} else if (printee->getType().bits == 16) { // int16
|
|
|
|
printData<int16_t>(printee, buffer, "%d, ");
|
|
|
|
} else if (printee->getType().bits == 32) { // int32
|
|
|
|
printData<int32_t>(printee, buffer, "%d, ");
|
|
|
|
} else if (printee->getType().bits == 64) { // int64
|
|
|
|
printData<int64_t>(printee, buffer, "%ld, ");
|
|
|
|
} else {
|
|
|
|
MNN_PRINT("\nunsupported data type");
|
|
|
|
}
|
|
|
|
} else if (printee->getType().code == halide_type_uint) {
|
|
|
|
if (printee->getType().bits == 8) { // uint8
|
|
|
|
printData<uint8_t>(printee, buffer, "%d, ");
|
|
|
|
} else if (printee->getType().bits == 16) { // uint16
|
|
|
|
printData<uint16_t>(printee, buffer, "%d, ");
|
|
|
|
} else if (printee->getType().bits == 32) { // uint32
|
|
|
|
printData<uint32_t>(printee, buffer, "%d, ");
|
|
|
|
} else if (printee->getType().bits == 64) { // uint64
|
|
|
|
printData<uint64_t>(printee, buffer, "%ld, ");
|
|
|
|
} else {
|
|
|
|
MNN_PRINT("\nunsupported data type");
|
|
|
|
}
|
|
|
|
} else if (printee->getType().code == halide_type_float) {
|
|
|
|
if (printee->getType().bits == 32) { // float32
|
|
|
|
printData<float>(printee, buffer, "%f, ");
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
MNN_PRINT("\nunsupported data type");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
MNN_PRINT("\nunsupported data type");
|
|
|
|
}
|
|
|
|
|
|
|
|
// clean up
|
|
|
|
if (printee != this) {
|
|
|
|
delete printee;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace MNN
|