2019-07-25 13:36:35 +08:00
|
|
|
//
|
|
|
|
// ShapeDepthToSpace.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/07/16.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "Macro.h"
|
|
|
|
#include "SizeComputer.hpp"
|
2019-08-22 20:13:46 +08:00
|
|
|
#include "TensorUtils.hpp"
|
2019-07-25 13:36:35 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
class DepthToSpaceSizeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(inputs.size() == 1);
|
|
|
|
MNN_ASSERT(outputs.size() == 1);
|
|
|
|
MNN_ASSERT(inputs[0]->buffer().dimensions == 4);
|
|
|
|
|
|
|
|
// here only implement NHWC
|
|
|
|
// TODO: implement NC4HW4
|
|
|
|
const int blockSize = op->main_as_DepthSpaceParam()->blockSize();
|
|
|
|
MNN_ASSERT(blockSize > 1);
|
|
|
|
MNN_ASSERT(inputs[0]->buffer().dim[3].extent % (blockSize * blockSize) == 0);
|
|
|
|
|
|
|
|
auto& ib = inputs[0]->buffer();
|
|
|
|
auto& ob = outputs[0]->buffer();
|
|
|
|
|
|
|
|
ob.dimensions = ib.dimensions;
|
|
|
|
ob.dim[0].extent = ib.dim[0].extent;
|
|
|
|
ob.dim[1].extent = ib.dim[1].extent * blockSize;
|
|
|
|
ob.dim[2].extent = ib.dim[2].extent * blockSize;
|
|
|
|
ob.dim[3].extent = ib.dim[3].extent / (blockSize * blockSize);
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-07-25 13:36:35 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(DepthToSpaceSizeComputer, OpType_DepthToSpace);
|
|
|
|
|
|
|
|
} // namespace MNN
|