2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeLSTM.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "Macro.h"
|
|
|
|
#include "SizeComputer.hpp"
|
|
|
|
#include "TensorUtils.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
// Size Computer
|
|
|
|
class LSTMComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
|
|
|
|
const std::vector<Tensor *> &outputs) const override {
|
|
|
|
MNN_ASSERT(2 >= inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
|
|
|
|
// copy dims
|
|
|
|
auto &input = inputs[0]->buffer();
|
|
|
|
auto &output = outputs[0]->buffer();
|
|
|
|
memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
|
|
|
|
|
|
|
|
auto LSTM = op->main_as_LSTM();
|
|
|
|
output.dim[3].extent = LSTM->outputCount();
|
|
|
|
output.dim[2].extent = 1;
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(LSTMComputer, OpType_LSTM);
|
|
|
|
} // namespace MNN
|