2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeMatMul.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "Macro.h"
|
|
|
|
#include "SizeComputer.hpp"
|
|
|
|
#include "TensorUtils.hpp"
|
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
class MatMulSizeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(2 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
MNN_ASSERT(2 == inputs[0]->buffer().dimensions);
|
|
|
|
MNN_ASSERT(2 == inputs[1]->buffer().dimensions);
|
2019-06-17 20:10:35 +08:00
|
|
|
MNN_ASSERT(op->main_type() == OpParameter_MatMul);
|
|
|
|
auto matMul = op->main_as_MatMul();
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
auto output = outputs[0];
|
2019-06-17 20:10:35 +08:00
|
|
|
TensorUtils::copyShape(inputs[0], output, true);
|
|
|
|
auto w0 = inputs[0]->length(1);
|
|
|
|
auto h0 = inputs[0]->length(0);
|
2019-04-17 10:49:11 +08:00
|
|
|
|
2019-06-17 20:10:35 +08:00
|
|
|
if (matMul->transposeA()) {
|
|
|
|
auto t = w0;
|
|
|
|
w0 = h0;
|
|
|
|
h0 = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto w1 = inputs[1]->length(1);
|
|
|
|
auto h1 = inputs[1]->length(0);
|
|
|
|
if (matMul->transposeB()) {
|
|
|
|
auto t = w1;
|
|
|
|
w1 = h1;
|
|
|
|
h1 = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (w0 != h1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
output->buffer().type = inputs[0]->buffer().type;
|
|
|
|
output->setLength(0, h0);
|
|
|
|
output->setLength(1, w1);
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(MatMulSizeComputer, OpType_MatMul);
|
|
|
|
} // namespace MNN
|