2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeBinaryOp.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <set>
|
|
|
|
#include "Macro.h"
|
|
|
|
#include "SizeComputer.hpp"
|
2019-06-17 20:10:35 +08:00
|
|
|
#include "TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
//#define FORCE_SAME_SHAPE
|
|
|
|
namespace MNN {
|
|
|
|
class BinaryOpComputer : public SizeComputer {
|
|
|
|
public:
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(2 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
|
|
|
|
const auto opType = op->main_as_BinaryOp()->opType();
|
|
|
|
static std::set<int> int32Types{MNN::BinaryOpOperation_GREATER, MNN::BinaryOpOperation_GREATER_EQUAL,
|
|
|
|
MNN::BinaryOpOperation_LESS};
|
|
|
|
if (int32Types.find(opType) != int32Types.end()) {
|
2019-06-17 20:10:35 +08:00
|
|
|
outputs[0]->buffer().type = halide_type_of<int32_t>();
|
2019-04-17 10:49:11 +08:00
|
|
|
} else {
|
|
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (inputs[0]->buffer().dimensions == 0) {
|
|
|
|
::memcpy(outputs[0]->buffer().dim, inputs[1]->buffer().dim,
|
|
|
|
inputs[1]->buffer().dimensions * sizeof(halide_dimension_t));
|
|
|
|
outputs[0]->buffer().dimensions = inputs[1]->buffer().dimensions;
|
|
|
|
} else if (inputs[1]->buffer().dimensions == 0) {
|
|
|
|
::memcpy(outputs[0]->buffer().dim, inputs[0]->buffer().dim,
|
|
|
|
inputs[0]->buffer().dimensions * sizeof(halide_dimension_t));
|
|
|
|
outputs[0]->buffer().dimensions = inputs[0]->buffer().dimensions;
|
|
|
|
} else { // no scalar input
|
|
|
|
#ifdef FORCE_SAME_SHAPE
|
|
|
|
bool same_shape = true;
|
|
|
|
for (int i = 0; i < inputs[0]->dimensions(); ++i) {
|
|
|
|
if (inputs[0]->length(i) != inputs[1]->length(i)) {
|
|
|
|
same_shape = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
bool same_shape = inputs[0]->elementSize() == inputs[1]->elementSize();
|
|
|
|
#endif
|
|
|
|
if (same_shape) {
|
|
|
|
::memcpy(outputs[0]->buffer().dim, inputs[0]->buffer().dim,
|
|
|
|
inputs[0]->buffer().dimensions * sizeof(halide_dimension_t));
|
|
|
|
outputs[0]->buffer().dimensions = inputs[0]->buffer().dimensions;
|
|
|
|
} else { // not the same shape, use broadcast
|
|
|
|
const int max_dimensions = std::max(inputs[0]->buffer().dimensions, inputs[1]->buffer().dimensions);
|
|
|
|
|
|
|
|
std::vector<int> dims0(max_dimensions, 1);
|
|
|
|
std::vector<int> dims1(max_dimensions, 1);
|
|
|
|
for (int i = inputs[0]->buffer().dimensions - 1, j = max_dimensions - 1; i >= 0; i--, j--) {
|
|
|
|
dims0[j] = inputs[0]->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
for (int i = inputs[1]->buffer().dimensions - 1, j = max_dimensions - 1; i >= 0; i--, j--) {
|
|
|
|
dims1[j] = inputs[1]->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
bool supportBroadcast = true;
|
|
|
|
for (int i = 0; i < max_dimensions; i++) {
|
|
|
|
if ((dims0[i] != dims1[i]) && !(dims0[i] == 1 || dims1[i] == 1)) {
|
|
|
|
supportBroadcast = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (supportBroadcast) {
|
|
|
|
for (int i = 0; i < max_dimensions; i++) {
|
|
|
|
outputs[0]->buffer().dim[i].extent = std::max(dims0[i], dims1[i]);
|
|
|
|
outputs[0]->buffer().dim[i].flags = 0;
|
|
|
|
}
|
|
|
|
outputs[0]->buffer().dimensions = max_dimensions;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-06-17 20:10:35 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
REGISTER_SHAPE(BinaryOpComputer, OpType_BinaryOp);
|
|
|
|
} // namespace MNN
|