MNN/source/shape/ShapeSlice.cpp

80 lines
3.1 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeSlice.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Macro.h"
#include "SizeComputer.hpp"
namespace MNN {
class SliceComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(2 <= outputs.size());
auto slice = op->main_as_Slice();
auto& input = inputs[0]->buffer();
int axis = slice->axis();
if (axis == -1) {
axis += input.dimensions;
}
if (MNN::NetSource_CAFFE == slice->sourceType()) {
// caffe Slice
int previous = 0;
for (int i = 0; i < slice->slicePoints()->size(); ++i) {
int sliceIndex = slice->slicePoints()->data()[i];
auto& output = outputs[i]->buffer();
output.dimensions = input.dimensions;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.type = input.type;
output.dim[axis].extent = sliceIndex - previous;
previous = sliceIndex;
}
// Compute Last
auto& output = outputs[outputs.size() - 1]->buffer();
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.dim[axis].extent = input.dim[axis].extent - previous;
} else {
// tensorflow Split
if (1 == slice->slicePoints()->size()) {
// scalar
const int numSplits = slice->slicePoints()->data()[0];
MNN_ASSERT(numSplits == outputs.size());
MNN_ASSERT(0 == input.dim[axis].extent % numSplits);
const int splitDim = input.dim[axis].extent / numSplits;
for (int i = 0; i < numSplits; i++) {
auto& output = outputs[i]->buffer();
output.dimensions = input.dimensions;
output.type = input.type;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.dim[axis].extent = splitDim;
}
} else {
// one dimension tensor, ex: [5,30]=>[5,4]+[5,15]+[5,11], slicePoints is [4, 15, 11]
MNN_ASSERT(slice->slicePoints()->size() == outputs.size());
for (int i = 0; i < slice->slicePoints()->size(); i++) {
auto& output = outputs[i]->buffer();
output.type = input.type;
output.dimensions = input.dimensions;
::memcpy(output.dim, input.dim, input.dimensions * sizeof(halide_dimension_t));
output.dim[axis].extent = slice->slicePoints()->data()[i];
}
}
}
return true;
}
};
REGISTER_SHAPE(SliceComputer, OpType_Slice);
} // namespace MNN