2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//  CPUPadding.cpp
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//  MNN
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//  Created by MNN on 2019/6/24.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//  Copyright © 2018 Alibaba. All rights reserved.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#include "backend/cpu/CPUPadding.hpp"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "core/Macro.h"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "core/TensorUtils.hpp"
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#include <string.h>
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#include "backend/cpu/CPUTensorConvert.hpp"
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								namespace MNN {
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								ErrorCode memsetHelper(const Tensor *padValueTensor, Tensor *output) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto dtype     = output->getType();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    const int size = output->elementSize();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (dtype == halide_type_of<float>()) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        const auto padValue = padValueTensor->host<float>()[0];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto ptr            = output->host<float>();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        std::fill(ptr, ptr + size, padValue);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    } else if (dtype == halide_type_of<int>()) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        const auto padValue = padValueTensor->host<int>()[0];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto ptr            = output->host<int>();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        std::fill(ptr, ptr + size, padValue);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    } else {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        MNN_ERROR("TODO, support other data type: %d\n", dtype.code);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return NOT_SUPPORT;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								//  refer to tflite mirrorPad
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								struct CacheElement {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int start;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int end;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								};
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								int MirrorPadImpl(const Tensor *data, CacheElement *cache, Tensor *paddedData, const int *pad, int currentDim,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                  int flatIndex, int outputIndex, int offset) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    const int bytes = data->getType().bytes();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (currentDim == paddedData->dimensions()) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if (outputIndex >= paddedData->elementSize()) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return outputIndex;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        memcpy(paddedData->host<char>() + outputIndex * bytes, data->host<char>() + flatIndex * bytes, bytes);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return outputIndex + 1;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    const int cacheIndex = currentDim * data->elementSize() + flatIndex;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto &cacheEntry     = cache[cacheIndex];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (cacheEntry.start != -1) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        const int size = cacheEntry.end - cacheEntry.start;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        memcpy(paddedData->host<char>() + outputIndex * bytes, paddedData->host<char>() + cacheEntry.start * bytes,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								               size * bytes);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return outputIndex + size;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cacheEntry.start     = outputIndex;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int leftPad          = pad[2 * currentDim];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int rightPad         = pad[2 * currentDim + 1];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    const int multiplier = data->stride(currentDim);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for (int i = leftPad + offset - 1; i >= offset && leftPad > 0; --i, --leftPad) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        outputIndex = MirrorPadImpl(data, cache, paddedData, pad, currentDim + 1, flatIndex + i * multiplier,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                    outputIndex, offset);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    const int curDimLength = data->length(currentDim);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for (int i = 0; i < curDimLength; ++i) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        outputIndex = MirrorPadImpl(data, cache, paddedData, pad, currentDim + 1, flatIndex + i * multiplier,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                    outputIndex, offset);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for (int i = curDimLength - (1 + offset); i >= 0 && rightPad > 0; --i, --rightPad) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        outputIndex = MirrorPadImpl(data, cache, paddedData, pad, currentDim + 1, flatIndex + i * multiplier,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                    outputIndex, offset);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cacheEntry.end = outputIndex;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return outputIndex;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								static ErrorCode resizeImpl(Backend *bn, const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                            Tensor *cache) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    const int size = inputs[0]->elementSize() * inputs[0]->dimensions() * 2;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cache->setType(DataType_DT_INT32);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cache->buffer().dimensions = 1;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    cache->setLength(0, size);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    bool success = bn->onAcquireBuffer(cache, Backend::DYNAMIC);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (!success) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return OUT_OF_MEMORY;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    bn->onReleaseBuffer(cache, Backend::DYNAMIC);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								ErrorCode CPUPadding::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (mMode != PadValueMode_CONSTANT) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return resizeImpl(backend(), inputs, outputs, &mCache);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								void CPUPadding::execute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, PadValueMode mode) {
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto input   = inputs[0];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto output  = outputs[0];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto padding = inputs[1]->host<int32_t>();
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if (inputs.size() == 3) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        memsetHelper(inputs[2], output);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    } else {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        ::memset(output->host<char>(), 0, output->size());
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    auto outputData = output->host<char>();
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    auto inputData  = input->host<char>();
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#define MAX_DIM 6
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    MNN_ASSERT(output->dimensions() <= MAX_DIM);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int dims[MAX_DIM];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int oStride[MAX_DIM];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int iStride[MAX_DIM];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int pad[MAX_DIM];
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto bytes = input->getType().bytes();
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    for (int i = 0; i < MAX_DIM; ++i) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        pad[i]     = 0;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dims[i]    = 1;
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        oStride[i] = 0;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        iStride[i] = 0;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    int offset = MAX_DIM - input->dimensions();
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    for (int i = 0; i < input->dimensions(); ++i) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        pad[offset + i]     = padding[2 * i];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        dims[offset + i]    = input->length(i);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        oStride[offset + i] = output->stride(i) * bytes;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        iStride[offset + i] = input->stride(i) * bytes;
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for (int w = 0; w < dims[0]; ++w) {
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        auto ow = outputData + (w + pad[0]) * oStride[0];
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        auto sw = inputData + w * iStride[0];
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#define PTR(x, y, i)                              \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto o##x = o##y + (x + pad[i]) * oStride[i]; \
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto s##x = s##y + x * iStride[i];
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for (int v = 0; v < dims[1]; ++v) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            PTR(v, w, 1);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for (int u = 0; u < dims[2]; ++u) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                PTR(u, v, 2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                for (int z = 0; z < dims[3]; ++z) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    PTR(z, u, 3);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                    for (int y = 0; y < dims[4]; ++y) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                        PTR(y, z, 4);
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                        ::memcpy(oy + pad[5] * oStride[5], sy, iStride[4]);
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								                    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                }
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#undef MAX_DIM
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#undef PTR
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								ErrorCode CPUPadding::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (mMode == PadValueMode_CONSTANT) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        execute(inputs, outputs, mMode);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    } else {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        // REFLECT or SYMMETRIC
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        int offset     = mMode == PadValueMode_SYMMETRIC ? 0 : 1;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto cacheData = reinterpret_cast<CacheElement *>(mCache.host<char>());
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        std::fill(cacheData, cacheData + mCache.elementSize() / 2, CacheElement{-1, -1});
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        const int *pad  = inputs[1]->host<int32_t>();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        int outputIndex = 0;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        MirrorPadImpl(inputs[0], cacheData, outputs[0], pad, 0, 0, outputIndex, offset);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								ErrorCode CPUPaddingPacked::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto padding    = inputs[1];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto paddingPtr = padding->host<int32_t>();
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if (paddingPtr[2] != 0 || paddingPtr[3] != 0 || mMode != PadValueMode_CONSTANT) {
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        mNeedConvert = true;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (!mNeedConvert) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    mTempOutput.reset(Tensor::createDevice<float>(outputs[0]->shape(), Tensor::CAFFE));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    mTempInput.reset(Tensor::createDevice<float>(inputs[0]->shape(), Tensor::CAFFE));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    bool res = backend()->onAcquireBuffer(mTempOutput.get(), Backend::DYNAMIC);
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    res      = res && backend()->onAcquireBuffer(mTempInput.get(), Backend::DYNAMIC);
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if (!res) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return OUT_OF_MEMORY;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    mTempInputs  = {mTempInput.get(), inputs[1]};
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    mTempOutputs = {mTempOutput.get()};
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    if (mMode != PadValueMode_CONSTANT) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        resizeImpl(backend(), inputs, outputs, &mCache);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    backend()->onReleaseBuffer(mTempOutput.get(), Backend::DYNAMIC);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    backend()->onReleaseBuffer(mTempInput.get(), Backend::DYNAMIC);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								ErrorCode CPUPaddingPacked::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto input  = inputs[0];
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto output = outputs[0];
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if (mNeedConvert) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        CPUTensorConverter::convert(input, mTempInput.get());
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        // CPUPadding::execute(mTempInputs, mTempOutputs, mMode);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if (mMode == PadValueMode_CONSTANT) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            CPUPadding::execute(mTempInputs, mTempOutputs, mMode);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        } else {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            // REFLECT or SYMMETRIC
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            int offset     = mMode == PadValueMode_SYMMETRIC ? 0 : 1;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            auto cacheData = reinterpret_cast<CacheElement *>(mCache.host<char>());
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            std::fill(cacheData, cacheData + mCache.elementSize(), CacheElement{-1, -1});
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            const int *pad  = inputs[1]->host<int32_t>();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            int outputIndex = 0;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            MirrorPadImpl(mTempInput.get(), cacheData, mTempOutput.get(), pad, 0, 0, outputIndex, offset);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        CPUTensorConverter::convert(mTempOutput.get(), output);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    auto iw = input->width();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto ih = input->height();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto ic = input->channel();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto ib = input->batch();
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto ow      = output->width();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto oh      = output->height();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto icC4    = UP_DIV(ic, 4);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    auto padding = inputs[1]->host<int32_t>();
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    if (inputs.size() == 3) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto code = memsetHelper(inputs[2], output);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if (code != NO_ERROR) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return code;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    } else {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        ::memset(output->host<float>(), 0, output->size());
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for (int n = 0; n < ib; ++n) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto inputN  = input->host<float>() + input->stride(0) * n;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto outputN = output->host<float>() + output->stride(0) * (padding[2 * 0] + n);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        for (int c = 0; c < icC4; ++c) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            auto inputC  = inputN + c * iw * ih * 4;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            auto outputC = outputN + c * ow * oh * 4;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            for (int h = 0; h < ih; ++h) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                auto inputH  = inputC + h * iw * 4;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                auto outputH = outputC + (h + padding[2 * 2]) * ow * 4;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                ::memcpy(outputH + padding[2 * 3] * 4, inputH, iw * 4 * sizeof(float));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    return NO_ERROR;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								class CPUPaddingCreator : public CPUBackend::Creator {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								public:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                const MNN::Op *op, Backend *backend) const {
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        auto param = op->main_as_PadParam();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        auto mode  = PadValueMode_CONSTANT;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        if (param) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            mode = param->mode();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if (TensorUtils::getDescribe(inputs[0])->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								            return new CPUPadding(backend, mode);
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if (inputs[0]->dimensions() != 4) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            MNN_ERROR("Currently padding only support 4 dimension for NC4HW4\n");
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return nullptr;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												- build:
	- unify schema building in core and converter;
	- add more build script for android;
	- add linux build script for python;
- ops impl:
	- add floor mod support in binary;
	- use eltwise impl in add/max/sub/mul binary for optimization;
	- remove fake double support in cast;
	- fix 5d support for concat;
	- add adjX and adjY support for batch matmul;
	- optimize conv2d back prop filter;
	- add pad mode support for conv3d;
	- fix bug in conv2d & conv depthwise with very small feature map;
	- optimize binary without broacast;
	- add data types support for gather;
	- add gather ND support;
	- use uint8 data type in gather v2;
	- add transpose support for matmul;
	- add matrix band part;
	- add dim != 4 support for padding, reshape & tensor convert;
	- add pad type support for pool3d;
	- make ops based on TensorFlow Lite quantization optional;
	- add all & any support for reduction;
	- use type in parameter as output type in reduction;
	- add int support for unary;
	- add variable weight support for conv2d;
	- fix conv2d depthwise weights initialization;
	- fix type support for transpose;
	- fix grad outputs count for  reduce grad and reshape grad;
	- fix priorbox & detection output;
	- fix metal softmax error;
- python:
	- add runSessionWithCallBackInfo interface;
	- add max nodes limit (1400) for visualization tool;
	- fix save error in python3;
	- align default dim;
- convert:
	- add extra design for optimization;
	- add more post converting optimizers;
	- add caffe v1 weights blob support;
	- add cast, unary, conv transpose support for onnx model;
	- optimize batchnorm, conv with variable weights, prelu, reshape, slice, upsample for onnx model;
	- add cos/sin/atan/tan support for unary for tensorflow model;
	- add any/all support for reduction for tensorflow model;
	- add elu, conv3d, pool3d support for tensorflow model;
	- optimize argmax, batchnorm, concat, batch to space, conv with variable weights, prelu, slice for tensorflow model;
- others:
	- fix size computer lock;
	- fix thread pool deadlock;
	- add express & parameters in express;
	- rewrite blitter chooser without static map;
	- add tests for expr;
											
										 
										
											2019-10-29 13:37:26 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        if (inputs[0]->buffer().type.bits != 32) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            MNN_ERROR("Currently padding NC4HW4 only support 32 bit padding\n");
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								            return nullptr;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								        }
							 | 
						
					
						
							
								
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								        return new CPUPaddingPacked(backend, mode);
							 | 
						
					
						
							
								
									
										
										
										
											2019-07-02 18:01:08 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								};
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								REGISTER_CPU_OP_CREATOR(CPUPaddingCreator, OpType_Padding);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}; // namespace MNN
							 |