MNN/source/backend/cpu/CPUUnary.cpp

200 lines
7.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUUnary.cpp
// MNN
//
// Created by MNN on 2018/08/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUUnary.hpp"
#include "UnaryUtils.hpp"
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUBackend.hpp"
#include "core/Macro.h"
#include "core/Concurrency.h"
2020-02-26 09:57:17 +08:00
#include "compute/ConvOpt.h"
#include "compute/CommonOptFunction.h"
#include <MNN/AutoTime.hpp>
2019-04-17 10:49:11 +08:00
namespace MNN {
CPUUnary::CPUUnary(Backend *b, MNNUnaryExecute proc) : MNN::Execution(b), mProc(proc) {
2019-04-17 10:49:11 +08:00
// nothing to do
}
ErrorCode CPUUnary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == outputs.size());
2020-12-15 14:12:35 +08:00
MNN_ASSERT(inputs[0]->getType() == halide_type_of<float>() || inputs[0]->getType() == halide_type_of<int32_t>());
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
static void _Neg(void* out, const void* inp, int realSize) {
MNNScaleAndAddBiasScalar((float*)out, (const float*)inp, 0.0f, -1.0f, realSize);
2019-04-17 10:49:11 +08:00
}
static void _ABS(void* out, const void* inp, int realSize) {
MNNReluWithSlopeCommon((float*)out, (const float*)inp, realSize, -1.0f);
2019-12-27 22:16:57 +08:00
}
static void _Square(void* out, const void* inp, int realSize) {
MNNMatrixProdCommon((float*)out, (const float*)inp, (const float*)inp, realSize, 0, 0, 0, 1);
2019-12-27 22:16:57 +08:00
}
static void _EXP(void* outRaw, const void* inpRaw, int realSize) {
auto out = (float*)outRaw;
auto inp = (const float*)inpRaw;
MNNScaleAndAddBiasScalar(out, inp, 0.0f, -1.0f, realSize);
MNNExp(out, out, realSize);
2019-12-27 22:16:57 +08:00
}
static void _EXPM1(void* outRaw, const void* inpRaw, int realSize) {
auto out = (float*)outRaw;
auto inp = (const float*)inpRaw;
MNNScaleAndAddBiasScalar(out, inp, 0.0f, -1.0f, realSize);
MNNExp(out, out, realSize);
for (int i=0; i<realSize; ++i) {
out[i] = out[i] - 1.0f;
2019-12-27 22:16:57 +08:00
}
}
2019-12-27 22:16:57 +08:00
MNNUnaryExecute CPUUnary::selectForFloat(int type, int precision) {
switch (type) {
case UnaryOpOperation_ABS:
return _ABS;
case UnaryOpOperation_SQUARE:
return _Square;
case UnaryOpOperation_NEG:
return _Neg;
case UnaryOpOperation_RSQRT:
return _unaryOp<UnaryRsqrt<float>, float>;
case UnaryOpOperation_EXP:
return _EXP;
case UnaryOpOperation_COS:
return _unaryOp<UnaryCos<float>, float>;
case UnaryOpOperation_SIN:
return (MNNUnaryExecute)MNNSin;
case UnaryOpOperation_SIGMOID:
if (BackendConfig::Precision_Low == precision) {
return (MNNUnaryExecute)MNNSigmoidLowp;
2019-12-27 22:16:57 +08:00
} else {
return (MNNUnaryExecute)MNNSigmoid;
2019-12-27 22:16:57 +08:00
}
break;
case UnaryOpOperation_TANH:
return (MNNUnaryExecute)MNNTanh;
case UnaryOpOperation_TAN:
return _unaryOp<UnaryTan<float>, float>;
case UnaryOpOperation_ATAN:
return _unaryOp<UnaryATan<float>, float>;
case UnaryOpOperation_SQRT:
return _unaryOp<UnarySqrt<float>, float>;
case UnaryOpOperation_CEIL:
return _unaryOp<UnaryCeil<float>, float>;
case UnaryOpOperation_RECIPROCAL:
return _unaryOp<UnaryRecipocal<float>, float>;
case UnaryOpOperation_LOG1P:
return _unaryOp<UnaryLog1p<float>, float>;
case UnaryOpOperation_LOG:
return _unaryOp<UnaryLog<float>, float>;
case UnaryOpOperation_FLOOR:
return _unaryOp<UnaryFloor<float>, float>;
case UnaryOpOperation_BNLL:
return _unaryOp<UnaryBNLL<float>, float>;
case UnaryOpOperation_ACOSH:
return _unaryOp<UnaryAcosh<float>, float>;
case UnaryOpOperation_SINH:
return _unaryOp<UnarySinh<float>, float>;
case UnaryOpOperation_ASINH:
return _unaryOp<UnaryAsinh<float>, float>;
case UnaryOpOperation_ATANH:
return _unaryOp<UnaryAtanh<float>, float>;
case UnaryOpOperation_SIGN:
return _unaryOp<UnarySign<float>, float>;
case UnaryOpOperation_ROUND:
return _unaryOp<UnaryRound<float>, float>;
case UnaryOpOperation_COSH:
return _unaryOp<UnaryCosh<float>, float>;
case UnaryOpOperation_ERF:
return _unaryOp<UnaryErf<float>, float>;
case UnaryOpOperation_ERFC:
return _unaryOp<UnaryErfc<float>, float>;
case UnaryOpOperation_ERFINV:
return _unaryOp<UnaryErfinv<float>, float>;
case UnaryOpOperation_EXPM1:
return _EXPM1;
case UnaryOpOperation_ASIN:
return _unaryOp<UnaryAsin<float>, float>;
case UnaryOpOperation_ACOS:
return _unaryOp<UnaryAcos<float>, float>;
case UnaryOpOperation_HARDSWISH:
return (MNNUnaryExecute)MNNHardSwishCommon;
case UnaryOpOperation_GELU:
return (MNNUnaryExecute)MNNGeluCommon;
default:
MNN_ASSERT(false);
break;
}
return nullptr;
}
2019-12-27 22:16:57 +08:00
static MNNUnaryExecute selectForInt(int type) {
switch (type) {
case UnaryOpOperation_ABS:
return _unaryOp<UnaryAbs<int32_t>, int32_t>;
case UnaryOpOperation_NEG:
return _unaryOp<UnaryNeg<int32_t>, int32_t>;
case UnaryOpOperation_SQUARE:
return _unaryOp<UnarySquare<int32_t>, int32_t>;
case UnaryOpOperation_SIGN:
return _unaryOp<UnarySign<int32_t>, int32_t>;
default:
break;
}
return nullptr;
}
2019-04-17 10:49:11 +08:00
ErrorCode CPUUnary::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
auto size = static_cast<CPUBackend*>(backend())->getTensorSize(input);
2020-02-26 09:57:17 +08:00
auto schedule = ((CPUBackend*)backend())->multiThreadDivide(size);
auto inputPtr = input->host<uint8_t>();
auto outputPtr = output->host<uint8_t>();
int outBytes = output->getType().bytes();
if (halide_type_float == output->getType().code) {
outBytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
}
2021-04-08 15:34:23 +08:00
MNN_CONCURRENCY_BEGIN(tId, schedule.second) {
int start = schedule.first * (int)tId;
int realSize = schedule.first;
if (tId == schedule.second -1 ) {
realSize = size - start;
2020-02-26 09:57:17 +08:00
}
2021-04-08 15:34:23 +08:00
if (realSize > 0) {
auto inp = inputPtr + start * outBytes;
auto out = outputPtr + start * outBytes;
mProc(out, inp, realSize);
2020-02-26 09:57:17 +08:00
}
2019-04-17 10:49:11 +08:00
}
2021-04-08 15:34:23 +08:00
MNN_CONCURRENCY_END();
2019-04-17 10:49:11 +08:00
return NO_ERROR;
}
class CPUUnaryCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
auto precision = static_cast<CPUBackend*>(backend)->precisionMode();
auto type = inputs[0]->getType();
MNNUnaryExecute proc = nullptr;
if (type.code == halide_type_int) {
proc = selectForInt(op->main_as_UnaryOp()->opType());
} else if (type.code == halide_type_float) {
proc = static_cast<CPUBackend*>(backend)->functions()->MNNSelectUnaryFunctionForFloat(op->main_as_UnaryOp()->opType(), static_cast<CPUBackend*>(backend)->precisionMode());
}
if (nullptr == proc) {
return nullptr;
}
return new CPUUnary(backend, proc);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUUnaryCreator, OpType_UnaryOp);
} // namespace MNN