MNN/source/backend/cpu/CPUTopKV2.cpp

126 lines
4.0 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUTopKV2.cpp
// MNN
//
// Created by MNN on 2018/08/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
2019-12-27 22:16:57 +08:00
#include "backend/cpu/CPUTopKV2.hpp"
#include "backend/cpu/CPUBackend.hpp"
#include "core/Macro.h"
2019-04-17 10:49:11 +08:00
namespace MNN {
template <typename T>
class TopContainer {
public:
TopContainer() = delete;
TopContainer(int32_t k, int32_t rowSize) : mK(k) {
mContainer.reserve(std::min(k, rowSize) + 1);
}
void startCollecting(const T* values) {
mValues = values;
mContainer.clear();
}
void push(int32_t a) {
auto comparator = [this](int32_t a, int32_t b) { return compareFunc(a, b); };
if (mContainer.size() <= mK) {
mContainer.push_back(a);
if (mContainer.size() == mK + 1) {
std::make_heap(mContainer.begin(), mContainer.end(), comparator);
std::pop_heap(mContainer.begin(), mContainer.end(), comparator);
}
} else if (comparator(a, mContainer.front())) {
mContainer.back() = a;
std::push_heap(mContainer.begin(), mContainer.end(), comparator);
std::pop_heap(mContainer.begin(), mContainer.end(), comparator);
}
}
const std::vector<int32_t>& sortedResult() {
auto comparator = [this](int32_t a, int32_t b) { return compareFunc(a, b); };
if (mContainer.size() <= mK) {
std::sort(mContainer.begin(), mContainer.end(), comparator);
} else {
std::sort_heap(mContainer.begin(), mContainer.end() - 1, comparator);
mContainer.resize(mK);
}
return mContainer;
}
private:
int32_t mK;
std::vector<int32_t> mContainer;
const T* mValues = nullptr;
bool compareFunc(int32_t a, int32_t b) const {
if (mValues[b] < mValues[a]) {
return true;
} else if (mValues[b] > mValues[a]) {
return false;
} else {
return a < b;
}
}
};
template <typename T>
void findTopK(int32_t rowSize, int32_t numRows, const T* data, int32_t k, int32_t* outputIndexes, T* outputValues) {
TopContainer<T> topc(k, rowSize);
for (int row = 0; row < numRows; row++) {
const T* valuesRow = data + row * rowSize;
topc.startCollecting(valuesRow);
for (int c = 0; c < rowSize; c++) {
topc.push(c);
}
int32_t* indexesRow = outputIndexes + row * k;
T* ouputRow = outputValues + row * k;
const auto& topK = topc.sortedResult();
std::copy(topK.begin(), topK.end(), indexesRow);
std::transform(topK.begin(), topK.end(), ouputRow, [valuesRow](const int32_t loc) { return valuesRow[loc]; });
}
}
CPUTopKV2::CPUTopKV2(Backend* b) : MNN::Execution(b) {
2019-04-17 10:49:11 +08:00
// nothing to do
}
ErrorCode CPUTopKV2::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
const int k = inputs[1]->host<int32_t>()[0];
auto inputTensor = inputs[0];
auto outputData = outputs[0];
auto outputIndices = outputs[1];
const int inputDimension = inputTensor->buffer().dimensions;
const int rowSize = inputTensor->buffer().dim[inputDimension - 1].extent;
MNN_ASSERT(k <= rowSize);
const int numRows = inputTensor->elementSize() / rowSize;
if (halide_type_float == inputTensor->getType().code) {
2019-04-17 10:49:11 +08:00
auto inputData = inputTensor->host<float>();
auto topkData = outputData->host<float>();
int* indicesData = outputIndices->host<int32_t>();
findTopK<float>(rowSize, numRows, inputData, k, indicesData, topkData);
} else {
MNN_PRINT("TODO\n");
MNN_ASSERT(false);
}
return NO_ERROR;
}
class CPUTopKV2Creator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
return new CPUTopKV2(backend);
2019-04-17 10:49:11 +08:00
}
};
REGISTER_CPU_OP_CREATOR(CPUTopKV2Creator, OpType_TopKV2);
} // namespace MNN