2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeReshape.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
|
|
|
#include "core/SizeComputer.hpp"
|
|
|
|
#include "core/TensorUtils.hpp"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
class ReshapeComputer : public SizeComputer {
|
|
|
|
public:
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
|
|
|
MNN_ASSERT(1 == inputs.size() || 2 == inputs.size());
|
|
|
|
MNN_ASSERT(1 == outputs.size());
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto output = outputs[0];
|
|
|
|
outputs[0]->buffer().type = inputs[0]->buffer().type;
|
|
|
|
int dimSize = 0;
|
|
|
|
std::vector<int> shapes;
|
|
|
|
if (1 == inputs.size()) {
|
|
|
|
// Const shape
|
|
|
|
auto shape = op->main_as_Reshape()->dims();
|
|
|
|
dimSize = shape->size();
|
|
|
|
shapes.resize(dimSize);
|
|
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
|
|
shapes[i] = shape->data()[i];
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// shape which is getted at the runtime
|
|
|
|
auto inputShape = inputs[1];
|
|
|
|
dimSize = inputShape->length(0);
|
|
|
|
shapes.resize(dimSize);
|
|
|
|
auto dim = inputShape->host<int32_t>();
|
2019-08-22 20:13:46 +08:00
|
|
|
if (TensorUtils::getDescribe(inputs[0])->dimensionFormat == MNN_DATA_FORMAT_NC4HW4 && TensorUtils::getDescribe(inputShape)->dimensionFormat == MNN_DATA_FORMAT_NHWC) {
|
2019-06-17 20:10:35 +08:00
|
|
|
//NCHW / NC4HW4
|
|
|
|
//NHWC -> NCHW
|
|
|
|
shapes = {dim[0], dim[3], dim[1], dim[2]};
|
|
|
|
} else {
|
|
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
|
|
shapes[i] = dim[i];
|
|
|
|
}
|
2019-04-17 10:49:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
output->buffer().dimensions = dimSize;
|
|
|
|
|
|
|
|
int determinAxis = -1;
|
|
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
|
|
int reshapeDim = shapes[i];
|
|
|
|
if (reshapeDim == -1) {
|
|
|
|
determinAxis = i;
|
|
|
|
output->buffer().dim[i].extent = 1;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (reshapeDim == 0) {
|
|
|
|
output->buffer().dim[i].extent = input->buffer().dim[i].extent;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
output->buffer().dim[i].extent = reshapeDim;
|
|
|
|
}
|
|
|
|
int totalSizeInput = 1;
|
|
|
|
int totalSizeOutput = 1;
|
|
|
|
for (int i = 0; i < input->buffer().dimensions; ++i) {
|
|
|
|
totalSizeInput *= input->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < dimSize; ++i) {
|
|
|
|
totalSizeOutput *= output->buffer().dim[i].extent;
|
|
|
|
}
|
|
|
|
if (determinAxis >= 0) {
|
|
|
|
output->buffer().dim[determinAxis].extent = totalSizeInput / totalSizeOutput;
|
|
|
|
}
|
2019-06-17 20:10:35 +08:00
|
|
|
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2019-08-22 20:13:46 +08:00
|
|
|
REGISTER_SHAPE_INPUTS(ReshapeComputer, OpType_Reshape, {1});
|
2019-04-17 10:49:11 +08:00
|
|
|
} // namespace MNN
|