MNN/source/backend/cpu/CPUAttention.cpp

665 lines
30 KiB
C++
Raw Normal View History

2024-05-11 19:17:02 +08:00
//
// CPUAttention.cpp
// MNN
//
// Created by MNN on 2024/03/19.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef MNN_SUPPORT_TRANSFORMER_FUSE
#include <limits>
#include "CPUAttention.hpp"
#include "CPUBackend.hpp"
#include "compute/CommonOptFunction.h"
#include "core/Macro.h"
#include "core/Concurrency.h"
#include "core/BufferAllocator.hpp"
#include "core/TensorUtils.hpp"
#include "core/OpCommonUtils.hpp"
#if defined (__aarch64__)
#define FLOAT16_T __fp16
#else
#define FLOAT16_T float
#endif
2024-07-04 11:53:45 +08:00
// reduce the value of 'query' to 'query * FP16_QSCALE', avoid fp16 overflow
#define FP16_QSCALE 0.5
2024-07-22 19:51:53 +08:00
#define FP8_E5M2
2024-05-11 19:17:02 +08:00
namespace MNN {
2024-07-22 19:51:53 +08:00
#if defined FP8_E5M2 // E5M2 : [S E E E E E M M]
typedef uint8_t fp8_t;
static inline fp8_t fp16_to_fp8(FLOAT16_T x) {
return *((fp8_t *)(&x) + 1);
}
static FLOAT16_T fp8_to_fp16(fp8_t x) {
uint16_t rawData = 0;
rawData |= (uint16_t)x << 8;
return *((FLOAT16_T *)(&rawData));
}
static inline fp8_t float_to_fp8(float x) {
uint32_t rawData = *((uint32_t *)(&x));
int sign = (rawData >> 31) & 1U;
int exp = (int)((rawData >> 23) & 0x0ffU) - 127;
if (exp < -16)
exp = -16;
if (exp > 15)
exp = 15;
exp += 16; // exp [-16, 15] ==> [0, 31]
int mant = (rawData >> 21) & 3U;
return (sign << 7) | (exp << 2) | mant;
}
static inline float fp8_to_float(fp8_t x) {
uint32_t sign = (x >> 7) & 1U;
uint32_t exp = (int)((x >> 2) & 0x1fU) - 16 + 127;
uint32_t mant = (x & 3U) << 21;
uint32_t rawData = (sign << 31) | (exp << 23) | mant;
return *((float *)(&rawData));
}
#elif defined FP8_E4M3 // E4M3: [S E E E E M M M]
typedef uint8_t fp8_t;
static inline fp8_t fp16_to_fp8(FLOAT16_T x) {
uint16_t rawData = *((uint16_t *)(&x));
int sign = (rawData >> 15) & 1U;
int exp = (int)((rawData >> 10) & 0x1fU) - 15;
if (exp < -8)
exp = -8;
if (exp > 7)
exp = 7;
exp += 8; // exp [-8, 7] ==> [0, 15]
int mant = (rawData >> 7) & 7U;
return (sign << 7) | (exp << 3) | mant;
}
static FLOAT16_T fp8_to_fp16(fp8_t x) {
uint32_t sign = (x >> 7) & 1U;
uint32_t exp = (int)((x >> 3) & 0x0fU) - 8 + 15;
uint32_t mant = (x & 7U) << 7;
uint16_t rawData = (sign << 15) | (exp << 10) | mant;
return *((FLOAT16_T *)(&rawData));
}
static inline fp8_t float_to_fp8(float x) {
uint32_t rawData = *((uint32_t *)(&x));
int sign = (rawData >> 31) & 1U;
int exp = (int)((rawData >> 23) & 0x0ffU) - 127;
if (exp < -8)
exp = -8;
if (exp > 7)
exp = 7;
exp += 8; // exp [-8, 7] ==> [0, 15]
int mant = (rawData >> 20) & 7U;
return (sign << 7) | (exp << 3) | mant;
}
static inline float fp8_to_float(fp8_t x) {
uint32_t sign = (x >> 7) & 1U;
uint32_t exp = (int)((x >> 3) & 0x0fU) - 8 + 127;
uint32_t mant = (x & 7U) << 20;
uint32_t rawData = (sign << 31) | (exp<< 23) | mant;
return *((float *)(&rawData));
}
#else
// Do not support fp8
#endif // fp8 format definition
static int nearestInt(float x) {
return x < 0 ? -nearestInt(-x) : (int)(x + 0.5f);
}
2024-05-11 19:17:02 +08:00
template <typename T>
2024-07-22 19:51:53 +08:00
static void pack_query(Tensor* query, char* pack_q, int mNumHead, int mHeadDim, int eP, int seq_len, int h, float q_scale) {
T * query_src = query->host<T>();
T * query_dst = reinterpret_cast<T*>(pack_q);
for (int i = 0; i < seq_len; i++) {
int out_index = i / eP;
int in_index = i % eP;
2024-05-11 19:17:02 +08:00
for (int j = 0; j < mHeadDim; j++) {
2024-07-22 19:51:53 +08:00
query_dst[out_index * mHeadDim * eP + j * eP + in_index] = query_src[i * mNumHead * mHeadDim + h * mHeadDim + j] * q_scale;
}
}
}
template <typename T>
static void pack_key(Tensor* key, char* pack_key, int mPastLength, int seq_len, int mKvNumHead, int mHeadDim, int hP, int kv_h, char* scale, char* zero_point, bool quant) {
if (quant) { // Quantize the keys
auto key_src = key->host<T>();
auto key_dst = reinterpret_cast<int8_t*>(pack_key);
auto scale_dst = reinterpret_cast<T*>(scale);
auto zeroPoint_dst = reinterpret_cast<T*>(zero_point);
for (int i = 0; i < seq_len; i++) {
float minKey = key_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + 0];
float maxKey = key_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + 0];
for (int j = 1; j < mHeadDim; j++) {
auto key = key_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + j];
minKey = ALIMIN(minKey, key);
maxKey = ALIMAX(maxKey, key);
}
int out_index = (mPastLength + i) / hP;
int in_index = (mPastLength + i) % hP;
scale_dst[out_index * hP + in_index] = (maxKey - minKey) / 255.0f;
zeroPoint_dst[out_index * hP + in_index] = 128.0f * (maxKey - minKey) / 255.0f + minKey;
for (int j = 0; j < mHeadDim; j++) {
key_dst[out_index * mHeadDim * hP + j * hP + in_index] = nearestInt((key_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + j] - minKey) / (maxKey - minKey) * 255 - 128);
2024-05-11 19:17:02 +08:00
}
}
}
2024-07-22 19:51:53 +08:00
else { // Do not quantize the keys
auto key_src = key->host<T>();
auto key_dst = reinterpret_cast<T*>(pack_key);
for (int i = 0; i < seq_len; i++) {
int out_index = (mPastLength + i) / hP;
int in_index = (mPastLength + i) % hP;
for (int j = 0; j < mHeadDim; j++) {
key_dst[out_index * mHeadDim * hP + j * hP + in_index] = key_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + j];
}
}
}
}
template <typename T>
static void pack_value(Tensor* value, char* pack_value, int mMaxLength, int mPastLength, int seq_len, int mKvNumHead, int mHeadDim, int hP, int kv_h, bool quant) {
if (quant) { // Quantize the values to fp8
T * value_src = value->host<T>();
fp8_t * value_dst = reinterpret_cast<fp8_t*>(pack_value);
for (int i = 0; i < seq_len; i++) {
for (int j = 0; j < mHeadDim; j++) {
int out_index = j / hP;
int in_index = j % hP;
auto origin = value_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + j];
if (sizeof(T) == 2)
value_dst[out_index * mMaxLength * hP + (mPastLength + i) * hP + in_index] = fp16_to_fp8(origin);
else
value_dst[out_index * mMaxLength * hP + (mPastLength + i) * hP + in_index] = float_to_fp8(origin);
}
}
}
else { // Do not quantize the values
T * value_src = value->host<T>();
T * value_dst = reinterpret_cast<T*>(pack_value);
for (int i = 0; i < seq_len; i++) {
for (int j = 0; j < mHeadDim; j++) {
int out_index = j / hP;
int in_index = j % hP;
value_dst[out_index * mMaxLength * hP + (mPastLength + i) * hP + in_index] = value_src[i * mKvNumHead * mHeadDim + kv_h * mHeadDim + j];
}
}
}
}
void dequant_value_float(char * dst, char * src, int mHeadDim, int kv_seq_len, int hP, int mMaxLength) {
fp8_t * qv = (fp8_t *)src;
float * dqv = (float *)dst;
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
for (int j = 0; j < kv_seq_len; j++) {
2024-05-11 19:17:02 +08:00
for (int k = 0; k < hP; k++) {
2024-07-22 19:51:53 +08:00
dqv[i * kv_seq_len * hP + j * hP + k] = fp8_to_float(qv[i * mMaxLength * hP + j * hP + k]);
2024-05-11 19:17:02 +08:00
}
}
}
2024-07-22 19:51:53 +08:00
}
void dequant_value_fp16(char * dst, char * src, int mHeadDim, int kv_seq_len, int hP, int mMaxLength) {
fp8_t * qv = (fp8_t *)src;
FLOAT16_T * dqv = (FLOAT16_T *)dst;
for (int i = 0; i < UP_DIV(mHeadDim, hP); i++) {
for (int j = 0; j < kv_seq_len; j++) {
2024-05-11 19:17:02 +08:00
for (int k = 0; k < hP; k++) {
2024-07-22 19:51:53 +08:00
dqv[i * kv_seq_len * hP + j * hP + k] = fp8_to_fp16(qv[i * mMaxLength * hP + j * hP + k]);
2024-05-11 19:17:02 +08:00
}
}
}
}
template <typename T>
2024-07-22 19:51:53 +08:00
static void unpack_QK(float * unpack_qk_dst, char * pack_qk_src, int seq_len, int kv_seq_len, int unit) {
float * dst = unpack_qk_dst;
T * src = (T *)(pack_qk_src);
// [kv_seq_len/unit, seq_len, unit] -> [seq_len, kv_seq_len]
for (int i = 0; i < seq_len; i++) {
for (int j = 0; j < kv_seq_len; j++) {
int out_index = j / unit;
int in_index = j % unit;
dst[i * kv_seq_len + j] = src[out_index * seq_len * unit + i * unit + in_index];
2024-05-11 19:17:02 +08:00
}
}
}
template <typename T>
2024-07-22 19:51:53 +08:00
static void pack_QK(char * pack_qk_dst, float * qk_src, int seq_len, int kv_seq_len, int eP) {
T * dst = reinterpret_cast<T*>(pack_qk_dst);
float * src = reinterpret_cast<float*>(qk_src);
// [seq_len, kv_seq_len] -> [seq_len/eP, kv_seq_len, eP]
2024-05-11 19:17:02 +08:00
for (int i = 0; i < seq_len; i++) {
2024-07-22 19:51:53 +08:00
int out_index = i / eP;
int in_index = i % eP;
for (int j = 0; j < kv_seq_len; j++) {
dst[out_index * kv_seq_len * eP + j * eP + in_index] = src[i * kv_seq_len + j];
2024-05-11 19:17:02 +08:00
}
}
}
template <typename T>
2024-07-22 19:51:53 +08:00
static void mask_QK(float * unpack_qk, int seq_len, int kv_seq_len, float mScale, float min_val, int * mask_ptr, bool float_mask) {
if (seq_len == 1) {
for (int i = 0; i < kv_seq_len; i++) {
unpack_qk[i] = unpack_qk[i] * mScale;
}
} else if (float_mask) {
2024-06-03 20:09:34 +08:00
// float mask
2024-07-22 19:51:53 +08:00
T* fpmask_ptr = reinterpret_cast<T*>(mask_ptr);
for (int i = 0; i < seq_len * kv_seq_len; i++) {
unpack_qk[i] = unpack_qk[i] * mScale + fpmask_ptr[i];
2024-06-03 20:09:34 +08:00
}
} else {
// int mask
2024-07-22 19:51:53 +08:00
for (int i = 0; i < seq_len * kv_seq_len; i++) {
2024-06-03 20:09:34 +08:00
if (mask_ptr[i]) {
2024-07-22 19:51:53 +08:00
unpack_qk[i] = unpack_qk[i] * mScale;
2024-06-03 20:09:34 +08:00
} else {
2024-07-22 19:51:53 +08:00
unpack_qk[i] = min_val;
2024-06-03 20:09:34 +08:00
}
2024-05-11 19:17:02 +08:00
}
}
2024-07-22 19:51:53 +08:00
}
static void softmax_QK(float* softmax_qk_addr, float* unpack_qk_addr, int seq_len, int kv_seq_len) {
for (int i = 0; i < seq_len; i++) { // softmax each row
MNNSoftmax(softmax_qk_addr + i * kv_seq_len, unpack_qk_addr + i * kv_seq_len, kv_seq_len);
2024-05-11 19:17:02 +08:00
}
}
template <typename T>
2024-07-22 19:51:53 +08:00
static void unpack_QKV(char* pack_qkv, char* unpack_qkv, int mNumHead, int mHeadDim, int unit, int seq_len) {
auto src_ptr = reinterpret_cast<T*>(pack_qkv);
auto dst_ptr = reinterpret_cast<T*>(unpack_qkv);
for (int i = 0; i < seq_len; i++) {
for (int j = 0; j < mHeadDim; j++) {
int a = j / unit;
int b = j % unit;
dst_ptr[i * mNumHead * mHeadDim + j] = src_ptr[a * seq_len * unit + i * unit + b];
}
2024-05-11 19:17:02 +08:00
}
}
2024-07-22 19:51:53 +08:00
void CPUAttention::allocKVCache(int kv_seq_len, bool quantKey, bool quantValue) {
2024-07-04 11:53:45 +08:00
if (!mKVCache) {
2024-05-11 19:17:02 +08:00
return;
}
2024-07-22 19:51:53 +08:00
mResource->mMaxLength = kv_seq_len + mResource->mExpandChunk;
if (quantKey) {
mResource->mPastKey.reset(Tensor::createDevice<int8_t>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), mResource->mHeadDim, hP}));
mResource->mDequantKeyScale.reset(Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), 1, hP}));
mResource->mDequantKeyZeroPoint.reset(Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), 1, hP}));
backend()->onAcquireBuffer(mResource->mPastKey.get(), Backend::STATIC);
backend()->onAcquireBuffer(mResource->mDequantKeyScale.get(), Backend::STATIC);
backend()->onAcquireBuffer(mResource->mDequantKeyZeroPoint.get(), Backend::STATIC);
} else {
mResource->mPastKey.reset(Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), mResource->mHeadDim, hP}));
backend()->onAcquireBuffer(mResource->mPastKey.get(), Backend::STATIC);
}
if (quantValue) {
mResource->mPastValue.reset(Tensor::createDevice<fp8_t>({mResource->mKvNumHead, UP_DIV(mResource->mHeadDim, hP), mResource->mMaxLength, hP}));
backend()->onAcquireBuffer(mResource->mPastValue.get(), Backend::STATIC);
} else {
mResource->mPastValue.reset(Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mHeadDim, hP), mResource->mMaxLength, hP}));
backend()->onAcquireBuffer(mResource->mPastValue.get(), Backend::STATIC);
}
2024-05-11 19:17:02 +08:00
}
2024-07-22 19:51:53 +08:00
void CPUAttention::reallocKVCache(int kv_seq_len, bool quantKey, bool quantValue) {
if (!mKVCache || kv_seq_len <= mResource->mMaxLength) {
2024-05-11 19:17:02 +08:00
return;
}
2024-07-22 19:51:53 +08:00
int oldMaxLength = mResource->mMaxLength;
mResource->mMaxLength = kv_seq_len + mResource->mExpandChunk;
if (quantKey) {
auto new_key = Tensor::createDevice<int8_t>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), mResource->mHeadDim, hP});
auto new_scale = Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), 1, hP});
auto new_zeroPoint = Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), 1, hP});
backend()->onAcquireBuffer(new_key, Backend::STATIC);
backend()->onAcquireBuffer(new_scale, Backend::STATIC);
backend()->onAcquireBuffer(new_zeroPoint, Backend::STATIC);
for (int h = 0; h < mResource->mKvNumHead; h++) {
memcpy(new_key->host<char>() + h * UP_DIV(mResource->mMaxLength, hP) * mResource->mHeadDim * hP,
mResource->mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP) * mResource->mHeadDim * hP,
UP_DIV(oldMaxLength, hP) * mResource->mHeadDim * hP);
memcpy(new_scale->host<char>() + h * UP_DIV(mResource->mMaxLength, hP) * hP * bytes,
mResource->mDequantKeyScale->host<char>() + h * UP_DIV(oldMaxLength, hP) * hP * bytes,
UP_DIV(oldMaxLength, hP) * hP * bytes);
memcpy(new_zeroPoint->host<char>() + h * UP_DIV(mResource->mMaxLength, hP) * hP * bytes,
mResource->mDequantKeyZeroPoint->host<char>() + h * UP_DIV(oldMaxLength, hP) * hP * bytes,
UP_DIV(oldMaxLength, hP) * hP * bytes);
2024-05-11 19:17:02 +08:00
}
2024-07-22 19:51:53 +08:00
mResource->mPastKey.reset(new_key);
mResource->mDequantKeyScale.reset(new_scale);
mResource->mDequantKeyZeroPoint.reset(new_zeroPoint);
}
else {
auto new_key = Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mMaxLength, hP), mResource->mHeadDim, hP});
backend()->onAcquireBuffer(new_key, Backend::STATIC);
for (int h = 0; h < mResource->mKvNumHead; h++) {
memcpy(new_key->host<char>() + h * UP_DIV(mResource->mMaxLength, hP) * mResource->mHeadDim * hP * bytes,
mResource->mPastKey->host<char>() + h * UP_DIV(oldMaxLength, hP) * mResource->mHeadDim * hP * bytes,
UP_DIV(oldMaxLength, hP) * mResource->mHeadDim * hP * bytes);
}
mResource->mPastKey.reset(new_key);
}
if (quantValue) {
auto new_value = Tensor::createDevice<fp8_t>({mResource->mKvNumHead, UP_DIV(mResource->mHeadDim, hP), mResource->mMaxLength, hP});
backend()->onAcquireBuffer(new_value, Backend::STATIC);
for (int h = 0; h < mResource->mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mResource->mHeadDim, hP); i++) {
memcpy(new_value->host<char>() + (h * UP_DIV(mResource->mHeadDim, hP) + i) * mResource->mMaxLength * hP,
mResource->mPastValue->host<char>() + (h * UP_DIV(mResource->mHeadDim, hP) + i) * oldMaxLength * hP,
oldMaxLength * hP);
}
}
mResource->mPastValue.reset(new_value);
}
else {
auto new_value = Tensor::createDevice<float>({mResource->mKvNumHead, UP_DIV(mResource->mHeadDim, hP), mResource->mMaxLength, hP});
backend()->onAcquireBuffer(new_value, Backend::STATIC);
for (int h = 0; h < mResource->mKvNumHead; h++) {
for (int i = 0; i < UP_DIV(mResource->mHeadDim, hP); i++) {
memcpy(new_value->host<char>() + (h * UP_DIV(mResource->mHeadDim, hP) + i) * mResource->mMaxLength * hP * bytes,
mResource->mPastValue->host<char>() + (h * UP_DIV(mResource->mHeadDim, hP) + i) * oldMaxLength * hP * bytes,
oldMaxLength * hP * bytes);
}
}
mResource->mPastValue.reset(new_value);
2024-05-11 19:17:02 +08:00
}
}
ErrorCode CPUAttention::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2024-05-11 19:17:02 +08:00
auto core = static_cast<CPUBackend *>(backend())->functions();
core->MNNGetMatMulPackMode(&eP, &lP, &hP);
2024-07-22 19:51:53 +08:00
mThreadNum = ((CPUBackend *)backend())->threadNumber();
unit = core->pack;
2024-07-04 11:53:45 +08:00
bytes = core->bytes;
2024-05-11 19:17:02 +08:00
auto query = inputs[0];
2024-07-22 19:51:53 +08:00
auto key = inputs[1];
int seq_len = query->shape()[1];
mResource->mNumHead = query->shape()[2];
mResource->mHeadDim = query->shape()[3];
mResource->mKvNumHead = key->shape()[2];
mPackQ.reset(Tensor::createDevice<float>({mThreadNum, UP_DIV(seq_len, eP), mResource->mHeadDim, eP}));
mPackQKV.reset(Tensor::createDevice<float>({mThreadNum, UP_DIV(mResource->mHeadDim, unit), seq_len, unit}));
2024-05-11 19:17:02 +08:00
backend()->onAcquireBuffer(mPackQ.get(), Backend::DYNAMIC);
backend()->onAcquireBuffer(mPackQKV.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mPackQ.get(), Backend::DYNAMIC);
backend()->onReleaseBuffer(mPackQKV.get(), Backend::DYNAMIC);
return NO_ERROR;
}
ErrorCode CPUAttention::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
2024-05-11 19:17:02 +08:00
auto core = static_cast<CPUBackend *>(backend())->functions();
auto query = inputs[0];
2024-07-22 19:51:53 +08:00
auto key = inputs[1];
2024-05-11 19:17:02 +08:00
auto value = inputs[2];
auto mask = inputs[3];
2024-07-22 19:51:53 +08:00
auto mask_shape = mask->shape();
2024-06-03 20:09:34 +08:00
bool float_mask = (mask->getType() == halide_type_of<float>());
2024-07-22 19:51:53 +08:00
int mask_seqlen = mask_shape[2];
int mask_kvlen = mask_shape[3];
int seq_len = query->shape()[1];
MNN_ASSERT(seq_len == mask_seqlen);
mIsPrefill = (seq_len > 1);
// isPrefill and mask is Square Matrix, is FirstPrefill
mIsFirstPrefill = mIsPrefill && (mask_kvlen == mask_seqlen);
int tileCount = UP_DIV(mResource->mNumHead, mThreadNum);
int group_size = mResource->mNumHead / mResource->mKvNumHead;
2024-07-22 19:51:53 +08:00
// 0: do not quant kv
// 1: only quant k
// 2: only quant v
// 3: quant kv
int quantKV = static_cast<CPUBackend *>(backend())->getRuntime()->hint().kvcacheQuantOption;
bool quantKey = (quantKV & 1) == 1;
bool quantValue = ((quantKV >> 1) & 1) == 1;
2024-07-04 11:53:45 +08:00
// reduce the value of 'query' to avoid fp16 overflow
2024-07-22 19:51:53 +08:00
float mScale = 1.0 / sqrt(mResource->mHeadDim);
2024-07-04 11:53:45 +08:00
float q_scale = 1.0;
if (bytes == 2) {
q_scale = FP16_QSCALE;
2024-07-22 19:51:53 +08:00
mScale /= q_scale;
2024-07-04 11:53:45 +08:00
}
2024-05-11 19:17:02 +08:00
2024-07-22 19:51:53 +08:00
if (mIsPrefill) {
// Only reset the kvcache in the first prefill, but keep the kvcache in subsequent prefill
if (mIsFirstPrefill) {
mResource->mPastLength = 0;
allocKVCache(seq_len, quantKey, quantValue);
} else {
reallocKVCache(mResource->mPastLength + seq_len, quantKey, quantValue);
}
} else { // Decode
reallocKVCache(mResource->mPastLength + 1, quantKey, quantValue);
2024-07-04 11:53:45 +08:00
}
2024-07-22 19:51:53 +08:00
int kv_seq_len = mResource->mPastLength + seq_len;
2024-07-04 11:53:45 +08:00
2024-07-22 19:51:53 +08:00
// Temporary tensors for intermediate results
std::shared_ptr<Tensor> packQK(Tensor::createDevice<float>({mThreadNum, UP_DIV(kv_seq_len, unit), seq_len, unit}));
std::shared_ptr<Tensor> unpackQK(Tensor::createDevice<int32_t>({mThreadNum, seq_len, kv_seq_len}));
std::shared_ptr<Tensor> softmaxQK(Tensor::createDevice<int>({mThreadNum, seq_len, kv_seq_len}));
std::shared_ptr<Tensor> newPackQK(Tensor::createDevice<float>({mThreadNum, UP_DIV(seq_len, eP), kv_seq_len, eP}));
std::shared_ptr<Tensor> dequantV(Tensor::createDevice<float>({mThreadNum, UP_DIV(mResource->mHeadDim, hP), kv_seq_len, hP}));
backend()->onAcquireBuffer(packQK.get(), Backend::STATIC);
backend()->onAcquireBuffer(unpackQK.get(), Backend::STATIC);
backend()->onAcquireBuffer(softmaxQK.get(), Backend::STATIC);
backend()->onAcquireBuffer(newPackQK.get(), Backend::STATIC);
if (quantValue) {
backend()->onAcquireBuffer(dequantV.get(), Backend::STATIC);
}
2024-05-11 19:17:02 +08:00
2024-07-22 19:51:53 +08:00
std::function<void(int)> mCompute = [=](int tId) {
auto pack_q = mPackQ->host<char>() + tId * UP_DIV(seq_len, eP) * mResource->mHeadDim * eP * bytes;
auto pack_qk = packQK->host<char>() + tId * UP_DIV(kv_seq_len, unit) * seq_len * unit * bytes;
auto unpack_qk = unpackQK->host<float>() + tId * seq_len * kv_seq_len;
auto softmax_qk = softmaxQK->host<float>() + tId * seq_len * kv_seq_len;
auto new_pack_qk = newPackQK->host<char>() + tId * UP_DIV(seq_len, eP) * kv_seq_len * eP * bytes;
auto pack_qkv = mPackQKV->host<char>() + tId * UP_DIV(mResource->mHeadDim, unit) * seq_len * unit * bytes;
int head_index = tId * tileCount;
for (int h = head_index; h < head_index + tileCount && h < mResource->mNumHead; h++) {
2024-07-22 19:51:53 +08:00
int kv_h = h / group_size;
char * key_dst = nullptr;
char * key_scale_dst = nullptr;
char * key_zero_point_dst = nullptr;
char * value_dst = nullptr;
if (quantKey) {
key_dst = mResource->mPastKey->host<char>() + kv_h * UP_DIV(mResource->mMaxLength, hP) * mResource->mHeadDim * hP;
key_scale_dst = mResource->mDequantKeyScale->host<char>() + kv_h * UP_DIV(mResource->mMaxLength, hP) * 1 * hP * bytes;
key_zero_point_dst = mResource->mDequantKeyZeroPoint->host<char>() + kv_h * UP_DIV(mResource->mMaxLength, hP) * 1 * hP * bytes;
} else {
key_dst = mResource->mPastKey->host<char>() + kv_h * UP_DIV(mResource->mMaxLength, hP) * mResource->mHeadDim * hP * bytes;
}
if (quantValue) {
value_dst = mResource->mPastValue->host<char>() + kv_h * UP_DIV(mResource->mHeadDim, hP) * mResource->mMaxLength * hP;
} else {
value_dst = mResource->mPastValue->host<char>() + kv_h * UP_DIV(mResource->mHeadDim, hP) * mResource->mMaxLength * hP * bytes;
}
2024-05-11 19:17:02 +08:00
// pack for matmul
if (bytes == 2) {
2024-07-22 19:51:53 +08:00
pack_query<FLOAT16_T>(query, pack_q, mResource->mNumHead, mResource->mHeadDim, eP, seq_len, h, q_scale);
pack_key<FLOAT16_T>(key, key_dst, mResource->mPastLength, seq_len, mResource->mKvNumHead, mResource->mHeadDim, hP, kv_h, key_scale_dst, key_zero_point_dst, quantKey);
pack_value<FLOAT16_T>(value, value_dst, mResource->mMaxLength, mResource->mPastLength, seq_len, mResource->mKvNumHead, mResource->mHeadDim, hP, kv_h, quantValue);
2024-05-11 19:17:02 +08:00
} else {
2024-07-22 19:51:53 +08:00
pack_query<float>(query, pack_q, mResource->mNumHead, mResource->mHeadDim, eP, seq_len, h, q_scale);
pack_key<float>(key, key_dst, mResource->mPastLength, seq_len, mResource->mKvNumHead, mResource->mHeadDim, hP, kv_h, key_scale_dst, key_zero_point_dst, quantKey);
pack_value<float>(value, value_dst, mResource->mMaxLength, mResource->mPastLength, seq_len, mResource->mKvNumHead, mResource->mHeadDim, hP, kv_h, quantValue);
2024-05-11 19:17:02 +08:00
}
// query @ key
int loop_e = seq_len / eP;
int remain = seq_len % eP;
for (int i = 0 ; i < loop_e; i++) {
2024-07-22 19:51:53 +08:00
size_t shapeParameters[7];
2024-05-11 19:17:02 +08:00
size_t* parameters = shapeParameters;
2024-07-22 19:51:53 +08:00
parameters[0] = eP * bytes;
parameters[1] = mResource->mHeadDim;
parameters[2] = kv_seq_len;
parameters[3] = seq_len * unit * bytes;
parameters[4] = 0;
parameters[5] = 0;
parameters[6] = 0;
if (quantKey) {
core->MNNPackedMatMul_int8(
(float*)(pack_qk + (i * eP * unit) * bytes),
(float*)(pack_q + (i * mResource->mHeadDim * eP) * bytes),
(float*)key_dst,
parameters, nullptr, nullptr,
(float*)key_scale_dst, (float*)key_zero_point_dst
);
} else {
core->MNNPackedMatMul(
(float*)(pack_qk + (i * eP * unit) * bytes),
(float*)(pack_q + (i * mResource->mHeadDim * eP) * bytes),
(float*)key_dst,
parameters, nullptr, nullptr,
nullptr, nullptr
);
}
2024-05-11 19:17:02 +08:00
}
{
2024-07-22 19:51:53 +08:00
size_t shapeParameters[7];
2024-05-11 19:17:02 +08:00
size_t* parameters = shapeParameters;
2024-07-22 19:51:53 +08:00
parameters[0] = eP * bytes;
parameters[1] = mResource->mHeadDim;
parameters[2] = kv_seq_len;
parameters[3] = seq_len * unit * bytes;
parameters[4] = 0;
parameters[5] = 0;
parameters[6] = 0;
if (quantKey) {
core->MNNPackedMatMulRemain_int8(
(float*)(pack_qk + (loop_e * eP * unit) * bytes),
(float*)(pack_q + (loop_e * mResource->mHeadDim * eP) * bytes),
(float*)key_dst,
remain, parameters, nullptr, nullptr,
(float*)key_scale_dst, (float*)key_zero_point_dst
);
} else {
core->MNNPackedMatMulRemain(
(float*)(pack_qk + (loop_e * eP * unit) * bytes),
(float*)(pack_q + (loop_e * mResource->mHeadDim * eP) * bytes),
(float*)key_dst,
remain, parameters, nullptr, nullptr,
nullptr, nullptr
);
}
2024-05-11 19:17:02 +08:00
}
2024-07-22 19:51:53 +08:00
if(bytes == 2) {
// unpack qk: [kv_seq_len/unit, seq_len, unit] -> [seq_len, kv_seq_len]
unpack_QK<FLOAT16_T>(unpack_qk, pack_qk, seq_len, kv_seq_len, unit);
mask_QK<FLOAT16_T>(unpack_qk, seq_len, kv_seq_len, mScale, std::numeric_limits<float>::lowest(), mask->host<int>(), float_mask);
softmax_QK(softmax_qk, unpack_qk, seq_len, kv_seq_len);
// pack qk for qk @ v : [seq_len, kv_seq_len] -> [seq_len/eP, kv_seq_len, eP]
pack_QK<FLOAT16_T>(new_pack_qk, softmax_qk, seq_len, kv_seq_len, eP);
2024-05-11 19:17:02 +08:00
} else {
2024-07-22 19:51:53 +08:00
unpack_QK<float>(unpack_qk, pack_qk, seq_len, kv_seq_len, unit);
mask_QK<float>(unpack_qk, seq_len, kv_seq_len, mScale, std::numeric_limits<float>::lowest(), mask->host<int>(), float_mask);
softmax_QK(softmax_qk, unpack_qk, seq_len, kv_seq_len);
pack_QK<float>(new_pack_qk, softmax_qk, seq_len, kv_seq_len, eP);
}
// Dequantize values from fp8 to float
if (quantValue) {
char * qv = value_dst;
char * dqv = dequantV->host<char>() + tId * UP_DIV(mResource->mHeadDim, hP) * kv_seq_len * hP * bytes;
if (bytes == 2) {
dequant_value_fp16(dqv, qv, mResource->mHeadDim, kv_seq_len, hP, mResource->mMaxLength);
} else {
dequant_value_float(dqv, qv, mResource->mHeadDim, kv_seq_len, hP, mResource->mMaxLength);
}
value_dst = dqv;
2024-05-11 19:17:02 +08:00
}
// qk @ v
for (int i = 0 ; i < loop_e; i++) {
size_t shapeParameters[6];
size_t* parameters = shapeParameters;
parameters[0] = eP * bytes;
2024-07-22 19:51:53 +08:00
parameters[1] = kv_seq_len;
parameters[2] = mResource->mHeadDim;
2024-05-11 19:17:02 +08:00
parameters[3] = seq_len * unit * bytes;
parameters[4] = 0;
2024-07-22 19:51:53 +08:00
parameters[5] = quantValue ? 0 : (mResource->mMaxLength - kv_seq_len) * hP * bytes;
core->MNNPackedMatMul(
(float*)(pack_qkv + (i * eP * unit) * bytes),
(float*)(new_pack_qk + (i * kv_seq_len * eP) * bytes),
(float*)value_dst, parameters,
nullptr, nullptr, nullptr, nullptr
);
2024-05-11 19:17:02 +08:00
}
{
size_t shapeParameters[6];
size_t* parameters = shapeParameters;
parameters[0] = eP * bytes;
2024-07-22 19:51:53 +08:00
parameters[1] = kv_seq_len;
parameters[2] = mResource->mHeadDim;
2024-05-11 19:17:02 +08:00
parameters[3] = seq_len * unit * bytes;
parameters[4] = 0;
2024-07-22 19:51:53 +08:00
parameters[5] = quantValue ? 0 : (mResource->mMaxLength - kv_seq_len) * hP * bytes;
core->MNNPackedMatMulRemain(
(float*)(pack_qkv + (loop_e * eP * unit) * bytes),
(float*)(new_pack_qk + (loop_e * kv_seq_len * eP) * bytes),
(float*)value_dst, remain, parameters,
nullptr, nullptr, nullptr, nullptr
);
2024-05-11 19:17:02 +08:00
}
2024-07-22 19:51:53 +08:00
// unpack: [head_dim/unit, seq_len, unit] -> [seq_len, num_head, head_dim]
auto dst_ptr = outputs[0]->host<char>() + h * mResource->mHeadDim * bytes;
2024-05-11 19:17:02 +08:00
if (bytes == 2) {
2024-07-22 19:51:53 +08:00
unpack_QKV<int16_t>(pack_qkv, dst_ptr, mResource->mNumHead, mResource->mHeadDim, unit, seq_len);
2024-05-11 19:17:02 +08:00
} else {
2024-07-22 19:51:53 +08:00
unpack_QKV<float>(pack_qkv, dst_ptr, mResource->mNumHead, mResource->mHeadDim, unit, seq_len);
2024-05-11 19:17:02 +08:00
}
}
};
MNN_CONCURRENCY_BEGIN(tId, mThreadNum) {
2024-07-22 19:51:53 +08:00
mCompute((int)tId);
2024-05-11 19:17:02 +08:00
}
MNN_CONCURRENCY_END();
2024-07-22 19:51:53 +08:00
mResource->mPastLength += seq_len;
backend()->onReleaseBuffer(packQK.get(), Backend::STATIC);
backend()->onReleaseBuffer(unpackQK.get(), Backend::STATIC);
backend()->onReleaseBuffer(softmaxQK.get(), Backend::STATIC);
backend()->onReleaseBuffer(newPackQK.get(), Backend::STATIC);
if (quantValue){
backend()->onReleaseBuffer(dequantV.get(), Backend::STATIC);
2024-07-04 11:53:45 +08:00
}
2024-05-11 19:17:02 +08:00
return NO_ERROR;
}
bool CPUAttention::onClone(Backend* bn, const Op* op, Execution** dst) {
if (nullptr == dst) {
return true;
}
auto tmp = new CPUAttention(bn, mKVCache);
tmp->mResource = mResource;
*dst = tmp;
2024-05-11 19:17:02 +08:00
return true;
}
CPUAttention::CPUAttention(Backend *backend, bool kv_cache) : Execution(backend) {
mKVCache = kv_cache;
mResource.reset(new Resource);
}
2024-05-11 19:17:02 +08:00
class CPUAttentionCreator : public CPUBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
auto param = op->main_as_AttentionParam();
return new CPUAttention(backend, param->kv_cache());
}
};
REGISTER_CPU_OP_CREATOR_TRANSFORMER(CPUAttentionCreator, OpType_Attention);
} // namespace MNN
2024-07-22 19:51:53 +08:00
#endif