MNN/source/backend/cpu/bf16/BF16Binary.cpp

340 lines
13 KiB
C++
Raw Normal View History

2021-04-08 15:34:23 +08:00
//
// BF16Binary.cpp
// MNN
//
// Created by MNN on 2021/02/07.
// Copyright © 2021, Alibaba Group Holding Limited
//
#include <algorithm>
#include "backend/cpu/BinaryUtils.hpp"
#include "core/Macro.h"
#include "core/Execution.hpp"
#include "VecHalf.hpp"
#include "math/Vec.hpp"
#include "BF16Backend.hpp"
#include "BF16Functions.hpp"
using Vec4Half = MNN::Math::VecHalf<4>;
using Vec4 = MNN::Math::Vec<float, 4>;
namespace MNN {
class BF16BinaryFloat : public Execution {
public:
BF16BinaryFloat(Backend *b, int32_t type);
virtual ~BF16BinaryFloat() = default;
virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
protected:
int32_t mType;
int mNeedBroadcastIndex; // -1 do not need broadcast, 0 for input0, 1 for input1
int mTotalSize = 0;
};
template<typename Func>
void BF16BinaryWrap(int16_t *dst, const int16_t *src0, const int16_t *src1, const int elementSize, const int needBroadcastIndex) {
Func compute;
const int sizeDivUnit = elementSize / 4;
const int remainCount = elementSize - sizeDivUnit * 4;
float A[4];
float B[4];
float C[4];
if (-1 == needBroadcastIndex) {
if (sizeDivUnit > 0) {
for (int i = 0; i < sizeDivUnit; ++i) {
const auto src0Ptr = src0;
const auto src1Ptr = src1;
auto dstPtr = dst;
Vec4::save(A, Vec4(std::move(Vec4Half::load(src0Ptr).value)));
Vec4::save(B, Vec4(std::move(Vec4Half::load(src1Ptr).value)));
for (int v = 0; v < 4; ++ v) {
C[v] = compute(A[v], B[v]);
}
Vec4Half::save(dstPtr, Vec4Half(std::move(Vec4::load(C).value)));
src0 += 4;
src1 += 4;
dst += 4;
}
}
if (remainCount > 0) {
int16_t tempSrc0[4];
int16_t tempSrc1[4];
int16_t tempDst[4];
::memcpy(tempSrc0, src0, remainCount * sizeof(int16_t));
::memcpy(tempSrc1, src1, remainCount * sizeof(int16_t));
Vec4::save(A, Vec4(std::move(Vec4Half::load(tempSrc0).value)));
Vec4::save(B, Vec4(std::move(Vec4Half::load(tempSrc1).value)));
for (int v = 0; v < remainCount; ++ v) {
C[v] = compute(A[v], B[v]);
}
Vec4Half::save(tempDst, Vec4Half(std::move(Vec4::load(C).value)));
::memcpy(dst, tempDst, remainCount * sizeof(int16_t));
}
} else if (0 == needBroadcastIndex) {
const int16_t srcValue016 = src0[0];
float srcValue0;
BF16Functions::get()->MNNLowpToFp32(&srcValue016, &srcValue0, 1);
auto a = Vec4Half(srcValue0);
if (sizeDivUnit > 0) {
for (int i = 0; i < sizeDivUnit; ++i) {
const auto src1Ptr = src1;
auto dstPtr = dst;
Vec4::save(B, Vec4(std::move(Vec4Half::load(src1Ptr).value)));
for (int v = 0; v < 4; ++ v) {
C[v] = compute(A[v], B[v]);
}
Vec4Half::save(dstPtr, Vec4Half(std::move(Vec4::load(C).value)));
src1 += 4;
dst += 4;
}
}
if (remainCount > 0) {
int16_t tempSrc1[4];
int16_t tempDst[4];
::memcpy(tempSrc1, src1, remainCount * sizeof(int16_t));
Vec4::save(B, Vec4(std::move(Vec4Half::load(tempSrc1).value)));
for (int v = 0; v < remainCount; ++ v) {
C[v] = compute(srcValue0, B[v]);
}
Vec4Half::save(tempDst, Vec4Half(std::move(Vec4::load(C).value)));
::memcpy(dst, tempDst, remainCount * sizeof(int16_t));
}
} else {
const int16_t srcValue116 = src1[0];
float srcValue1;
BF16Functions::get()->MNNLowpToFp32(&srcValue116, &srcValue1, 1);
auto b = Vec4Half(srcValue1);
if (sizeDivUnit > 0) {
for (int i = 0; i < sizeDivUnit; ++i) {
const auto src0Ptr = src0;
auto dstPtr = dst;
Vec4::save(A, Vec4(std::move(Vec4Half::load(src0Ptr).value)));
for (int v = 0; v < 4; ++ v) {
C[v] = compute(A[v], B[v]);
}
Vec4Half::save(dstPtr, Vec4Half(std::move(Vec4::load(C).value)));
src0 += 4;
dst += 4;
}
}
if (remainCount > 0) {
int16_t tempSrc0[4];
int16_t tempDst[4];
::memcpy(tempSrc0, src0, remainCount * sizeof(int16_t));
Vec4::save(A, Vec4(std::move(Vec4Half::load(tempSrc0).value)));
for (int v = 0; v < remainCount; ++ v) {
C[v] = compute(A[v], srcValue1);
}
Vec4Half::save(tempDst, Vec4Half(std::move(Vec4::load(C).value)));
::memcpy(dst, tempDst, remainCount * sizeof(int16_t));
}
}
}
template<typename Func>
void BF16Binary(int16_t *dst, const int16_t *src0, const int16_t *src1, const int elementSize, const int needBroadcastIndex) {
Func compute;
const int sizeDivUnit = elementSize / 4;
const int remainCount = elementSize - sizeDivUnit * 4;
if (-1 == needBroadcastIndex) {
if (sizeDivUnit > 0) {
for (int i = 0; i < sizeDivUnit; ++i) {
Vec4Half a = Vec4Half::load(src0);
Vec4Half b = Vec4Half::load(src1);
Vec4Half::save(dst, compute(a, b));
src0 += 4;
src1 += 4;
dst += 4;
}
}
if (remainCount > 0) {
int16_t tempSrc0[4];
int16_t tempSrc1[4];
int16_t tempDst[4];
::memcpy(tempSrc0, src0, remainCount * sizeof(int16_t));
::memcpy(tempSrc1, src1, remainCount * sizeof(int16_t));
Vec4Half a = Vec4Half::load(tempSrc0);
Vec4Half b = Vec4Half::load(tempSrc1);
Vec4Half::save(tempDst, compute(a, b));
::memcpy(dst, tempDst, remainCount * sizeof(int16_t));
}
} else if (0 == needBroadcastIndex) {
const int16_t srcValue016 = src0[0];
float srcValue0;
BF16Functions::get()->MNNLowpToFp32(&srcValue016, &srcValue0, 1);
Vec4Half a = Vec4Half(srcValue0);
if (sizeDivUnit > 0) {
for (int i = 0; i < sizeDivUnit; ++i) {
const auto src1Ptr = src1;
auto dstPtr = dst;
Vec4Half b = Vec4Half::load(src1Ptr);
Vec4Half::save(dstPtr, compute(a, b));
src1 += 4;
dst += 4;
}
}
if (remainCount > 0) {
int16_t tempSrc1[8];
int16_t tempDst[8];
::memcpy(tempSrc1, src1, remainCount * sizeof(int16_t));
Vec4Half b = Vec4Half::load(tempSrc1);
Vec4Half::save(tempDst, compute(a, b));
::memcpy(dst, tempDst, remainCount * sizeof(int16_t));
}
} else {
const int16_t srcValue116 = src1[0];
float srcValue1;
BF16Functions::get()->MNNLowpToFp32(&srcValue116, &srcValue1, 1);
Vec4Half b = Vec4Half(srcValue1);
if (sizeDivUnit > 0) {
for (int i = 0; i < sizeDivUnit; ++i) {
const auto src0Ptr = src0;
auto dstPtr = dst;
Vec4Half a = Vec4Half::load(src0Ptr);
Vec4Half::save(dstPtr, compute(a, b));
src0 += 4;
dst += 4;
}
}
if (remainCount > 0) {
int16_t tempSrc0[8];
int16_t tempDst[8];
::memcpy(tempSrc0, src0, remainCount * sizeof(int16_t));
Vec4Half a = Vec4Half::load(tempSrc0);
Vec4Half::save(tempDst, compute(a, b));
::memcpy(dst, tempDst, remainCount * sizeof(int16_t));
}
}
}
struct VecBinaryAdd : std::binary_function<Vec4Half, Vec4Half, Vec4Half> {
Vec4Half operator()(const Vec4Half& x, const Vec4Half& y) const {
return x + y;
}
};
struct VecBinarySub : std::binary_function<Vec4Half, Vec4Half, Vec4Half> {
Vec4Half operator()(const Vec4Half& x, const Vec4Half& y) const {
return x - y;
}
};
struct VecBinaryMul : std::binary_function<Vec4Half, Vec4Half, Vec4Half> {
Vec4Half operator()(const Vec4Half& x, const Vec4Half& y) const {
return x * y;
}
};
struct VecBinaryMin : std::binary_function<Vec4Half, Vec4Half, Vec4Half> {
Vec4Half operator()(const Vec4Half& x, const Vec4Half& y) const {
return Vec4Half::min(x, y);
}
};
struct VecBinaryMax : std::binary_function<Vec4Half, Vec4Half, Vec4Half> {
Vec4Half operator()(const Vec4Half& x, const Vec4Half& y) const {
return Vec4Half::max(x, y);
}
};
struct VecBinarySqd : std::binary_function<Vec4Half, Vec4Half, Vec4Half> {
Vec4Half operator()(const Vec4Half& x, const Vec4Half& y) const {
return (x-y)*(x-y);
}
};
BF16BinaryFloat::BF16BinaryFloat(Backend *backend, int32_t type):Execution(backend), mType(type) {
// Do nothing
}
ErrorCode BF16BinaryFloat::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == outputs.size());
const int input0DataCount = inputs[0]->elementSize();
const int input1DataCount = inputs[1]->elementSize();
if (input1DataCount == input0DataCount) {
mNeedBroadcastIndex = -1;
mTotalSize = input1DataCount;
} else if (input0DataCount == 1) {
mNeedBroadcastIndex = 0;
mTotalSize = input1DataCount;
} else {
mNeedBroadcastIndex = 1;
mTotalSize = input0DataCount;
}
return NO_ERROR;
}
ErrorCode BF16BinaryFloat::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs){
auto input0 = inputs[0];
auto input1 = inputs[1];
auto output = outputs[0];
const auto src0 = input0->host<int16_t>();
const auto src1 = input1->host<int16_t>();
auto dst = output->host<int16_t>();
switch (mType) {
case BinaryOpOperation_ADD:
BF16Binary<VecBinaryAdd>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_SUB:
BF16Binary<VecBinarySub>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_MUL:
BF16Binary<VecBinaryMul>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_MINIMUM:
BF16Binary<VecBinaryMin>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_MAXIMUM:
BF16Binary<VecBinaryMax>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_SquaredDifference:
BF16Binary<VecBinarySqd>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_REALDIV:
BF16BinaryWrap<BinaryRealDiv<float, float, float>>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_FLOORDIV:
BF16BinaryWrap<BinaryFloorDiv<float, float, float>>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_FLOORMOD:
BF16BinaryWrap<BinaryFloorMod<float, float, float>>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_POW:
BF16BinaryWrap<BinaryPow<float, float, float>>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_ATAN2:
BF16BinaryWrap<BinaryAtan2<float, float, float>>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
case BinaryOpOperation_MOD:
BF16BinaryWrap<BinaryMod<float, float, float>>(dst, src0, src1, mTotalSize, mNeedBroadcastIndex);
break;
default:
return NOT_SUPPORT;
break;
}
return NO_ERROR;
}
class BF16BinaryCreator : public BF16Backend::BF16Creator {
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
int32_t type = op->main_as_BinaryOp()->opType();
auto dataType = outputs[0]->getType();
if (dataType.code != halide_type_float) {
return nullptr;
}
return new BF16BinaryFloat(backend, type);
}
};
REGISTER_BF16_OP_CREATOR(OpType_BinaryOp, BF16BinaryCreator);
} // namespace MNN