MNN/source/backend/opencl/execution/buffer/DepthwiseConvBufExecution.cpp

320 lines
16 KiB
C++
Raw Normal View History

//
// DepthwiseConvBufExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/DepthwiseConvBufExecution.hpp"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
#include "core/ConvolutionCommon.hpp"
namespace MNN {
namespace OpenCL {
DepthwiseConvBufExecution::DepthwiseConvBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: ConvBufCommonExecution(op->main_as_Convolution2D(), backend) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
mCon2dParams = op->main_as_Convolution2D();
mConv2dCommonParams = mCon2dParams->common();
mStrides = {mConv2dCommonParams->strideY(), mConv2dCommonParams->strideX()};
mDilations = {mConv2dCommonParams->dilateY(), mConv2dCommonParams->dilateX()};
int kernelWidth = mConv2dCommonParams->kernelX();
int kernelHeight = mConv2dCommonParams->kernelY();
int outputChannel = mConv2dCommonParams->outputCount();
std::vector<int> filterShape{1, outputChannel, kernelHeight, kernelWidth};
std::vector<int> filterImageShape{(int)kernelHeight * kernelWidth, (int)UP_DIV(outputChannel, 4)};
const float* filterDataPtr = nullptr;
int filterDataSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
ConvolutionCommon::getConvParameters(&quanCommon, mCon2dParams, &filterDataPtr, &filterDataSize);
mFilter.reset(Tensor::createDevice<float>({1, ROUND_UP(filterImageShape[1], 2)/*for kernel C8 read*/, 1, 4 * filterImageShape[0]}));
std::shared_ptr<Tensor> filterBuffer(Tensor::createDevice<float>(filterShape));
int buffer_size = filterBuffer->elementSize();
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, buffer_size);
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
cl_int error;
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(ptrCL != nullptr && error == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
for (int i = 0; i < filterBuffer->elementSize(); i++) {
((half_float::half *)ptrCL)[i] = (half_float::half)(filterDataPtr[i]);
}
} else {
::memcpy(ptrCL, filterDataPtr, filterBuffer->size());
}
}else{
MNN_ERROR("Map error ptrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
mOpenCLBackend->onAcquireBuffer(mFilter.get(), Backend::STATIC);
MNN::OpenCL::BufferConvertor bufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
bool needTrans = false;
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf() == false){
needTrans = true;
}
bufferConvertor.convertToNC4HW4Buffer(filterBuffer.get(), MNN::OpenCL::DW_CONV2D_FILTER, mFilter.get(), needTrans);
auto runtime = mOpenCLBackend->getOpenCLRuntime();
std::string kernelName = "depthwise_conv2d_c4h1w2";
if (mConv2dCommonParams->strideX() == 1 && mConv2dCommonParams->strideY() == 1 &&
mConv2dCommonParams->dilateX() == 1 && mConv2dCommonParams->dilateY() == 1) {
mStride_1 = true;
}
if(mStride_1) {
kernelName = "depthwise_conv2d_s1_c4h1w4";
}
if (mConv2dCommonParams->relu() == true) {
mBuildOptions.emplace("-DRELU");
} else if (mConv2dCommonParams->relu6() == true) {
mBuildOptions.emplace("-DRELU6");
}
mKernel = runtime->buildKernel("depthwise_conv2d_buf", kernelName, mBuildOptions);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(mKernel));
}
DepthwiseConvBufExecution::~DepthwiseConvBufExecution() {
mOpenCLBackend->onReleaseBuffer(mFilter.get(), Backend::STATIC);
}
ErrorCode DepthwiseConvBufExecution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
auto padding = ConvolutionCommon::convolutionPad(input, output, mConv2dCommonParams);
mPaddings[0] = padding.second;//padY
mPaddings[1] = padding.first;//padX
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannel = outputShape.at(3);
const int inputHeight = inputShape.at(1);
const int inputWidth = inputShape.at(2);
const int inputChannels = inputShape.at(3);
const int inputChannelBlocks = UP_DIV(inputChannels, 4);
const int filterHeight = mCon2dParams->common()->kernelY();
const int filterWidth = mCon2dParams->common()->kernelX();
int inputImageShape[2] = {inputHeight, inputWidth};
int outputImageShape[2] = {outputHeight, outputWidth};
int strideShape[2] = {mStrides[0], mStrides[1]};
int paddingShape[2] = {mPaddings[0], mPaddings[1]};
int kernelShape[2] = {filterHeight, filterWidth};
int dilationShape[2] = {mDilations[0], mDilations[1]};
if(mStride_1) {
// {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
const int total_kernel = 3;
const std::string kernelName[total_kernel] = {"depthwise_conv2d_s1_c4h1w4", "depthwise_conv2d_s1_c8h1w4", "depthwise_conv2d_s1_c8h1w2"};
int itemC[total_kernel] = {4, 8, 8};
int itemW[total_kernel] = {4, 4, 2};
int actual_kernel = total_kernel;
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
actual_kernel = 1;
}
cl::Kernel kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mBuildOptions);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
uint32_t idx = 0;
kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
kernel[knl_idx].setArg(idx++, openCLBuffer(input));
kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
kernel[knl_idx].setArg(idx++, openCLBuffer(output));
kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannels));
kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
kernel[knl_idx].setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
kernel[knl_idx].setArg(idx++, UP_DIV(outputChannel, 4));
std::pair<std::vector<uint32_t>, int> retTune;
retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
//printf("depthwiseCovs1 %d, %d\n", knl_idx, retTune.second);
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
mKernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mBuildOptions);
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, openCLBuffer(input));
mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
mKernel.setArg(idx++, openCLBuffer(mBias.get()));
mKernel.setArg(idx++, openCLBuffer(output));
mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
mKernel.setArg(idx++, static_cast<int>(inputChannels));
mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
mKernel.setArg(idx++, sizeof(strideShape), strideShape);
mKernel.setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
mKernel.setArg(idx++, UP_DIV(outputChannel, 4));
//printf("DepthwiseConvBufs1 %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
} else {
// {"depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2", "depthwise_conv2d_c4h1w1"};
const int total_kernel = 3;
const std::string kernelName[total_kernel] = {"depthwise_conv2d_c4h1w1", "depthwise_conv2d_c4h1w4", "depthwise_conv2d_c4h1w2"};
int itemC[total_kernel] = {4, 4, 4};
int itemW[total_kernel] = {1, 4, 2};
int actual_kernel = total_kernel;
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
actual_kernel = 1;
}
cl::Kernel kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<int, int> min_cost(INT_MAX, 0);//(min_time, min_index)
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[knl_idx], mBuildOptions);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(outputShape.at(3), itemC[knl_idx]) * UP_DIV(outputShape.at(2), itemW[knl_idx])), static_cast<uint32_t>(outputShape.at(0) * outputShape.at(1))};
uint32_t idx = 0;
kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][0]);
kernel[knl_idx].setArg(idx++, globalWorkSize[knl_idx][1]);
kernel[knl_idx].setArg(idx++, openCLBuffer(input));
kernel[knl_idx].setArg(idx++, openCLBuffer(mFilter.get()));
kernel[knl_idx].setArg(idx++, openCLBuffer(mBias.get()));
kernel[knl_idx].setArg(idx++, openCLBuffer(output));
kernel[knl_idx].setArg(idx++, sizeof(inputImageShape), inputImageShape);
kernel[knl_idx].setArg(idx++, static_cast<int>(inputChannels));
kernel[knl_idx].setArg(idx++, sizeof(outputImageShape), outputImageShape);
kernel[knl_idx].setArg(idx++, sizeof(kernelShape), kernelShape);
kernel[knl_idx].setArg(idx++, sizeof(paddingShape), paddingShape);
kernel[knl_idx].setArg(idx++, sizeof(dilationShape), dilationShape);
kernel[knl_idx].setArg(idx++, sizeof(strideShape), strideShape);
kernel[knl_idx].setArg(idx++, UP_DIV(outputWidth, itemW[knl_idx]));
kernel[knl_idx].setArg(idx++, UP_DIV(outputChannel, 4));
std::pair<std::vector<uint32_t>, int> retTune;
retTune = gws2dLwsTune(kernel[knl_idx], globalWorkSize[knl_idx], kernelName[knl_idx], maxWorkGroupSize);
//printf("depthwiseCov!! %d, %d\n", knl_idx, retTune.second);
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLocalWorkSize = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
mGlobalWorkSize = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
mKernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("depthwise_conv2d_buf", kernelName[min_index], mBuildOptions);
uint32_t idx = 0;
mKernel.setArg(idx++, mGlobalWorkSize[0]);
mKernel.setArg(idx++, mGlobalWorkSize[1]);
mKernel.setArg(idx++, openCLBuffer(input));
mKernel.setArg(idx++, openCLBuffer(mFilter.get()));
mKernel.setArg(idx++, openCLBuffer(mBias.get()));
mKernel.setArg(idx++, openCLBuffer(output));
mKernel.setArg(idx++, sizeof(inputImageShape), inputImageShape);
mKernel.setArg(idx++, static_cast<int>(inputChannels));
mKernel.setArg(idx++, sizeof(outputImageShape), outputImageShape);
mKernel.setArg(idx++, sizeof(kernelShape), kernelShape);
mKernel.setArg(idx++, sizeof(paddingShape), paddingShape);
mKernel.setArg(idx++, sizeof(dilationShape), dilationShape);
mKernel.setArg(idx++, sizeof(strideShape), strideShape);
mKernel.setArg(idx++, UP_DIV(outputWidth, itemW[min_index]));
mKernel.setArg(idx++, UP_DIV(outputChannel, 4));
//printf("DepthwiseConvBuf!! %d, %d %d, %d %d, %d %d\n", min_index, mGlobalWorkSize[0], mGlobalWorkSize[1], mLocalWorkSize[0], mLocalWorkSize[1], outputChannel, outputWidth);
}
return NO_ERROR;
}
ErrorCode DepthwiseConvBufExecution::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
#ifdef LOG_VERBOSE
MNN_PRINT("start DepthwiseConvBufExecution onExecute !\n");
#endif
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime(),
&event);
int costTime = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
MNN_PRINT("kernel cost:%d us DepthwiseConvBuf\n",costTime);
#else
runKernel2D(mKernel, mGlobalWorkSize, mLocalWorkSize,
mOpenCLBackend->getOpenCLRuntime());
#endif
#ifdef LOG_VERBOSE
MNN_PRINT("end DepthwiseConvBufExecution onExecute !\n");
#endif
return NO_ERROR;
}
class DepthwiseConvolutionBufCreator : public OpenCLBackend::Creator {
public:
virtual ~DepthwiseConvolutionBufCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
MNN_ASSERT(inputs.size() <= 3);
if (inputs.size() == 3) {
MNN_PRINT("multi input depthwise conv for opencl buffer not supoort!\n");
return nullptr;
}
MNN_ASSERT(inputs.size() == 1);
return new DepthwiseConvBufExecution(inputs, op, backend);
}
};
OpenCLCreatorRegister<DepthwiseConvolutionBufCreator> __DepthwiseConvBuf_op(OpType_ConvolutionDepthwise, BUFFER);
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */