MNN/source/core/OpCommonUtils.cpp

373 lines
13 KiB
C++
Raw Normal View History

2020-11-05 16:41:56 +08:00
//
// OpCommonUtils.cpp
// MNN
//
// Created by MNN on 2020/03/08.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "OpCommonUtils.hpp"
#include "MNN_generated.h"
2020-11-05 16:41:56 +08:00
#include "Macro.h"
namespace MNN {
2020-11-05 16:41:56 +08:00
void* OpCommonUtils::blobData(const Op* op) {
if (OpParameter_Blob != op->main_type()) {
return nullptr;
}
auto b = op->main_as_Blob();
void* result = nullptr;
switch (b->dataType()) {
case DataType_DT_FLOAT:
result = (void*)b->float32s()->Data();
break;
case DataType_DT_INT32:
result = (void*)b->int32s()->Data();
break;
case DataType_DT_QUINT8:
return (void*)b->uint8s()->Data();
break;
case DataType_DT_INT8:
return (void*)b->int8s()->Data();
break;
default:
MNN_ASSERT(false);
break;
}
return result;
}
static std::tuple<int, int, int> _split(int offset, int axisL, int area) {
int inside = offset % area;
int temp = offset / area;
int axis = temp % axisL;
int outside = temp / axisL;
return std::make_tuple(inside, axis, outside);
}
bool OpCommonUtils::canBlitFast(const Tensor::InsideDescribe::Region& region, const SPLITS& srcSplits,
const SPLITS& dstSplits, int pack) {
int srcCOffset = (region.src.offset / std::get<0>(srcSplits)) % std::get<1>(srcSplits);
if (srcCOffset % pack != 0) {
return false;
}
int dstCOffset = (region.dst.offset / std::get<0>(dstSplits)) % std::get<1>(dstSplits);
if (dstCOffset % pack != 0) {
return false;
}
// Check Dst stride
for (int i = 0; i < 3; ++i) {
int dstStride = (region.size[i] - 1) * region.dst.stride[i];
auto srcStride = region.src.stride[i] * (region.size[i] - 1);
auto dstCStep = ((dstStride / std::get<0>(dstSplits)) % std::get<1>(dstSplits)) + 1;
auto srcCStep = ((srcStride / std::get<0>(srcSplits)) % std::get<1>(srcSplits)) + 1;
if (dstCStep != srcCStep) {
// printf("%d, %d\n", dstCStep, srcCStep);
return false;
}
}
return true;
}
void OpCommonUtils::turnToPackRegion(const Tensor::InsideDescribe::Region& region,
Tensor::InsideDescribe::Region& c4Region, const SPLITS& srcSplits,
const SPLITS& dstSplits, int pack) {
int srcAxisC4 = UP_DIV(std::get<1>(srcSplits), pack);
auto dstAxisC4 = UP_DIV(std::get<1>(dstSplits), pack);
for (int i = 0; i < 3; ++i) {
int dstStride = (region.size[i] - 1) * region.dst.stride[i];
// Get Last Point's inside, axis, outside postion
auto tup = _split(dstStride, std::get<1>(dstSplits), std::get<0>(dstSplits));
if (std::get<1>(tup) > 0) {
// The size has axis offset, divide the axis and mul axisC4 instead
auto midC4 = UP_DIV(std::get<1>(tup) + 1, pack);
c4Region.size[i] = region.size[i] / (std::get<1>(tup) + 1) * midC4;
}
}
for (int i = 0; i < 3; ++i) {
{
int stride = region.src.stride[i];
auto tup = _split(stride, std::get<1>(srcSplits), std::get<0>(srcSplits));
int inside = std::get<0>(tup);
int axis = std::get<1>(tup);
int outside = std::get<2>(tup);
c4Region.src.stride[i] =
outside * srcAxisC4 * std::get<0>(srcSplits) + axis * std::get<0>(srcSplits) + inside;
}
{
int stride = region.dst.stride[i];
auto tup = _split(stride, std::get<1>(dstSplits), std::get<0>(dstSplits));
int inside = std::get<0>(tup);
int axis = std::get<1>(tup);
int outside = std::get<2>(tup);
c4Region.dst.stride[i] =
outside * dstAxisC4 * std::get<0>(dstSplits) + axis * std::get<0>(dstSplits) + inside;
}
}
{
auto offsetTup = _split(region.src.offset, std::get<1>(srcSplits), std::get<0>(srcSplits));
c4Region.src.offset = std::get<2>(offsetTup) * srcAxisC4 * pack * std::get<0>(srcSplits) +
std::get<1>(offsetTup) * std::get<0>(srcSplits) + std::get<0>(offsetTup) * pack;
}
{
auto offsetTup = _split(region.dst.offset, std::get<1>(dstSplits), std::get<0>(dstSplits));
c4Region.dst.offset = std::get<2>(offsetTup) * dstAxisC4 * pack * std::get<0>(dstSplits) +
std::get<1>(offsetTup) * std::get<0>(dstSplits) + std::get<0>(offsetTup) * pack;
}
// MNN_PRINT("Pack:%d, %d, %d, %d, src: %d - %d, %d, %d, dst: %d - %d, %d, %d\n", pack,
// c4Region.size[0],c4Region.size[1], c4Region.size[2], c4Region.src
// .offset, c4Region.src.stride[0], c4Region.src.stride[1], c4Region.src.stride[2], c4Region.dst.offset,
// c4Region.dst.stride[0], c4Region.dst .stride[1], c4Region.dst.stride[2]);
}
bool OpCommonUtils::canBlitFast(const Tensor::InsideDescribe::Region& region, const Tensor* dest, int pack) {
2021-02-07 10:45:07 +08:00
if (nullptr != region.offset) {
return false;
}
2020-11-05 16:41:56 +08:00
auto src = region.origin;
int srcArea = 1;
for (int i = 2; i < src->dimensions(); ++i) {
srcArea *= src->length(i);
}
int dstArea = 1;
for (int i = 2; i < dest->dimensions(); ++i) {
dstArea *= dest->length(i);
}
int inputBatch = 1;
int inputChannel = 1;
if (src->dimensions() > 0) {
inputBatch = src->length(0);
}
if (src->dimensions() > 1) {
inputChannel = src->length(1);
}
int dstBatch = 1;
int dstChannel = 1;
if (dest->dimensions() > 0) {
dstBatch = dest->length(0);
}
if (dest->dimensions() > 1) {
dstChannel = dest->length(1);
}
return canBlitFast(region, std::make_tuple(srcArea, inputChannel, inputBatch),
std::make_tuple(dstArea, dstChannel, dstBatch));
}
void OpCommonUtils::turnToPackRegion(const Tensor::InsideDescribe::Region& region,
Tensor::InsideDescribe::Region& c4Region, const Tensor* dest, int pack) {
c4Region = region;
auto src = region.origin;
int srcArea = 1;
for (int i = 2; i < src->dimensions(); ++i) {
srcArea *= src->length(i);
}
int dstArea = 1;
for (int i = 2; i < dest->dimensions(); ++i) {
dstArea *= dest->length(i);
}
int inputBatch = 1;
int inputChannel = 1;
if (src->dimensions() > 0) {
inputBatch = src->length(0);
}
if (src->dimensions() > 1) {
inputChannel = src->length(1);
}
int dstBatch = 1;
int dstChannel = 1;
if (dest->dimensions() > 0) {
dstBatch = dest->length(0);
}
if (dest->dimensions() > 1) {
dstChannel = dest->length(1);
}
turnToPackRegion(region, c4Region, std::make_tuple(srcArea, inputChannel, inputBatch),
std::make_tuple(dstArea, dstChannel, dstBatch), pack);
}
void OpCommonUtils::broastCastComputeDim(int* dims, int* stride, int* iStride0, int* iStride1, const Tensor* input0,
const Tensor* input1, const Tensor* output) {
for (int i = MNN_MAX_TENSOR_DIM - 1; i >= 0; --i) {
dims[i] = 1;
stride[i] = 0;
iStride0[i] = 0;
iStride1[i] = 0;
int input0I = i - (output->dimensions() - input0->dimensions());
int input1I = i - (output->dimensions() - input1->dimensions());
if (i < output->dimensions()) {
dims[i] = output->length(i);
stride[i] = output->stride(i);
}
if (input0I >= 0 && input0->length(input0I) != 1) {
iStride0[i] = input0->stride(input0I);
}
if (input1I >= 0 && input1->length(input1I) != 1) {
iStride1[i] = input1->stride(input1I);
}
}
}
2020-11-05 16:41:56 +08:00
std::vector<std::tuple<int, int, int>> OpCommonUtils::computeReduceDims(const std::vector<Tensor*>& inputs,
const Op* op) {
// Compute axises
std::vector<int> axises;
if (inputs.size() >= 2) {
auto size = inputs[1]->elementSize();
auto dims = inputs[1]->host<int32_t>();
for (int i = 0; i < size; ++i) {
axises.emplace_back(dims[i]);
}
} else {
auto reduct = op->main_as_ReductionParam();
if (nullptr != reduct->dim()) {
for (int i = 0; i < reduct->dim()->size(); ++i) {
axises.emplace_back(reduct->dim()->data()[i]);
}
}
}
auto totalSize = inputs[0]->elementSize();
if (axises.empty()) {
return {std::make_tuple(1, totalSize, 1)};
}
2020-11-05 16:41:56 +08:00
for (int i = 0; i < axises.size(); ++i) {
if (axises[i] < 0) {
axises[i] = inputs[0]->dimensions() + axises[i];
}
}
// Cache for input's dims
std::vector<int> lengths(inputs[0]->dimensions());
2020-11-05 16:41:56 +08:00
for (int i = 0; i < lengths.size(); ++i) {
lengths[i] = inputs[0]->length(i);
}
std::vector<std::pair<int, int>> groupAxises;
{
2020-11-05 16:41:56 +08:00
// Merge adj axis
std::sort(axises.begin(), axises.end());
int lastAxis = axises[0];
2020-11-05 16:41:56 +08:00
int length = 1;
int start = axises[0];
for (int i = 1; i < axises.size(); ++i) {
// MNN_PRINT("%d - %d\n", axises[i], lastAxis);
if (axises[i] - lastAxis == 1) {
length++;
} else {
groupAxises.emplace_back(std::make_pair(start, length));
length = 1;
2020-11-05 16:41:56 +08:00
start = axises[i];
}
lastAxis = axises[i];
}
groupAxises.emplace_back(std::make_pair(start, length));
}
// Compute inside-outside-axis
std::vector<std::tuple<int, int, int>> result;
2020-11-05 16:41:56 +08:00
for (int i = 0; i < groupAxises.size(); ++i) {
int outsideSize = 1;
2020-11-05 16:41:56 +08:00
int insideSize = 1;
int axisSize = 1;
auto start = groupAxises[i].first;
auto length = groupAxises[i].second;
if (start >= (int)lengths.size()) {
break;
}
2020-11-05 16:41:56 +08:00
for (int j = 0; j < start; ++j) {
outsideSize *= lengths[j];
}
2020-11-05 16:41:56 +08:00
for (int j = start; j < start + length; ++j) {
if (j >= (int)lengths.size()) {
break;
}
axisSize *= lengths[j];
lengths[j] = 1;
}
2020-11-05 16:41:56 +08:00
for (int j = start + length; j < lengths.size(); ++j) {
insideSize *= lengths[j];
}
if (1 == axisSize) {
continue;
}
result.emplace_back(std::make_tuple(outsideSize, axisSize, insideSize));
}
2020-11-05 16:41:56 +08:00
// FUNC_PRINT(result.size());
if (result.empty()) {
result.emplace_back(std::make_tuple(1, 1, totalSize));
}
return result;
}
2020-11-05 16:41:56 +08:00
void OpCommonUtils::unravelIndexHelper(std::vector<int32_t>& coordinate, const std::vector<int32_t>& mod, int size,
int indice) {
int value = indice;
for (int i = 0; i < size; ++i) {
coordinate[i] = value / mod[i];
value = value % mod[i];
}
}
2020-11-05 16:41:56 +08:00
int OpCommonUtils::computeStride(int32_t* strides, const int* shape, int length) {
if (length <= 0) {
return 1;
}
int stride = 1;
for (int i = length - 1; i >= 0; --i) {
strides[i] = stride;
stride *= shape[i];
}
return stride;
}
2021-04-08 15:34:23 +08:00
bool OpCommonUtils::opNeedContent(int type, int index) {
switch (type) {
case OpType_ZerosLike:
case OpType_ZeroGrad:
case OpType_Shape:
case OpType_Rank:
case OpType_Const:
case OpType_Size:
case OpType_PriorBox:
return false;
case OpType_Interp:
case OpType_Crop:
case OpType_Reshape:
case OpType_Reduction:
case OpType_Resize:
if (1 == index) {
return false;
}
break;
default:
break;
}
return true;
}
bool OpCommonUtils::opCompabilityForLowp(const Op* op) {
switch (op->type()) {
case OpType_Scale:
case OpType_Convolution:
case OpType_ConvolutionDepthwise:
case OpType_Deconvolution:
case OpType_DeconvolutionDepthwise:
case OpType_MatMul:
case OpType_BatchMatMul:
return true;
default:
break;
}
return false;
}
std::pair<bool, DataType> OpCommonUtils::getQuantInfo(const std::vector<Tensor*>& inputs) {
if (!inputs.empty()) {
for (auto t : inputs) {
if (TensorUtils::getDescribe(t)->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL
&& !TensorUtils::getDescribe(t)->regions.empty()) {
t = TensorUtils::getDescribe(t)->regions[0].origin;
}
auto& quantAttr = TensorUtils::getDescribe(t)->quantAttr;
if (quantAttr != nullptr) {
return std::make_pair(true, quantAttr->type);
}
}
}
return std::make_pair(false, DataType_DT_FLOAT);
}
2020-11-05 16:41:56 +08:00
} // namespace MNN